分数乘整数教学设计范例【推荐4篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“分数乘整数教学设计范例【推荐4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
分数乘整数教学设计【第一篇】
关键词:联系;理清;帮助;找出
中图分类号: 文献标志码:A 文章编号:1674-9324(2013)43-0191-02
在传统教学中,分数乘除法应用题抽象、乏味,学生解题方法单一,趋于模式化。因此,在教学中,要激发学生的学习兴趣,做到授之“渔”。教师应重视讲清数学原理,寻求更直观的教学设计,并辅以适当的解题技巧,才能将学生怕学、厌学的情绪转化为易学、乐学、想学。
一、联系整数应用题进行教学
分数应用题与整数应用题之间的共性体现在它们都可根据相同的数量关系来解题。而学生对整数应用题的数量关系比较熟悉,教学中教师要尽量帮助学生找出数量关系,通过数量关系来解题。
如:“一辆汽车每分钟行■千米,20分钟行多少千米?”
让学生找出题中的数量关系,学生很熟悉整数应用题中的“路程=速度×时间”,从这点上说,它和整数应用题是一致的。
二、理清分数乘除法三类应用题的关系
这三类基本应用题是:(1)求一个数是另一个数的几分之几。(2)求一个数的几分之几是多少。(3)已知一个数的几分之几是多少,求这个数。其解题依据是相通的。
如:100米的■是多少?可根据“求一个数的几分之几用乘法”来解,列式为100×■=75(米),可以转化为第二类应用题:75米是100米的几分之几?解法为75÷100=■。还可转化为第三类应用题:已知一条路的■是75米,这条路长多少米?解法为75÷■=100米。由上可见:若把100米设为A,75米设为B,■设为C,根据原题意可以得出A×C=B,再根据乘法各部分之间的关系又可得出:(1)C=B÷A。(2)A=B÷C,从而把原题转化为后两道题。
教学中,教师可利用这三类应用题的相通点,帮学生理解题意,并进行这三类应用题的对比练习,学生深刻地了解了这三类应用题的联系之后,教师再逐步加大练习难度。也可让学生自己编应用题并解答,教师再从中渗透解决此类问题的思考方法,让学生真正达到“自悟”。
三、帮助学生找准单位“1”的量
在分数乘除法应用题中,解题的关键是找出单位“1”的量,而单位“1”的量常存在于关键句中,如何找出单位“1”的量呢:
1.倍数与单位“1”结合理解。(1)鸡有50只,鸭是鸡的5倍,鸭有几只?(2)鸡有50只,鸭是鸡的■,鸭有几只?这两道题的解题思路是一样的,其实找出一倍数与找出单位“1”的量的方法是相同的,也就是它们的意义是相同的。即:一倍数×倍数=几倍数与单位“1”的量×相对应的分率=比较量,这里的一倍数就是分数乘除法中单位“1”的量,倍数就是分数乘除法中相对应的分率,几倍数就是分数乘除法中的比较量,这样学生在学习中只要仿照以前找准一倍数的方法来找单位“1”的量就不难解决了。
2.找准关键句,理清解题思路。在分数乘除法应用题中,都有关键句。在这些关键句中常出现分数,根据分数的概念,找出分数中分母是把“什么”平均几份的,而这里的“什么”即为单位“1”的量。如“一堆货物的■”一句中,引导学生说出“■”这个分数中分母“4”是把什么平均分成4份。通过思考,学生看出是把一堆货物平均分成4份,那么 “一堆货物”即为单位“1”的量;再如:“一年级人数是二年级人数的■”一句中,抓住“是”这个字,可以告诉学生“是”在这里和“等于”的意思是一样的,这样学生就容易看出这里是把二年级平均分成3份,那么“二年级”就是单位“1”的量。
一些题目的关键句叙述不完整,如:五(2)班有45人,女生占■,女生多少人?关键句“女生占■”中只有一个量“女生”,而另一个量省略了,可引导学生联系前后句学着扩句子:“五(2)班有45人,女生占全班人数的■,女生多少人?”“女生占全班人数的■”,即全班人数为标准量就是单位“1”的量。又如:“一种商品降价■”,叙述更简单,教师要引导学生理解句意,让学生明确本句意为“现价比原价降低■”,即原价为标准量。
四、用反推法帮助学生找出数量关系
反推法是从所求问题出发,找出获得解决所求问题的充分条件的方法。利用反推法,可以逐层找出解决问题的充分条件,这些未知的充分条件必然与题中已知条件之间有着紧密的关系,找出这些数量关系之后,就能求出充分条件,最终解决所求问题,利用反推法解决,环环紧扣,思路清晰,培养了学生的逻辑推理能力。
如:我校有女生150人,正好占男生的■,全校有多少人?
在解决此题时,可以这样引导学生:要求“全校人数”,我们必须先知道什么?题中男女生人数都是已知条件吗?只给出了女生人数,那么男生人数如何去求呢?男生人数又和什么量之间有关系呢?这样可得出关系式:男生人数×■ =150。据此求出男生人数,再根据全校人数等于男生人数加上女生人数求出全校人数。解题过程包含了两个关系式:(1)全校人数=男生人数+女生人数。(2)男生人数=女生人数÷■。
五、通过画线段图找出具体量的“对应分率”
新课标重视帮助学生建立几何直观:(1)充分地发挥图形带来的好处;(2)让孩子养成画图的好习惯;(3)重视变换,让图形动起来,把握图形与图形之间的关系;(4)在学生脑中留住这些图形。在分数乘除法应用题教学中,更为重要。一旦用图形把一个问题描述清楚,就有可能使这个问题变得直观、简单,从而帮助发现、寻找解决问题的思路。还可帮助表述、记忆一些结果。画好线段图会把分数乘除法应用题中的一些具体量整合在一起,使其对应的分率直观地呈现在学生眼前。
如:“男生是女生的■,男生比女生少10人,男生有多少人?”可先确定单位“1”的量,画出表示女生的线段,题中提出男生比女生少■,所以应把表示女生的线段平均分成3份,而男生的线段图应画成相等的2份,男生比女生少的10人,即为具体量,那这个具体量如何在图中表示呢?画出以下线段图。
学生通过作图、观察,得出:10人占了女生的■,也就是说已知女生的■是10人,求男生多少就用已知数量除以所对应的分率。这样问题就容易解决了。又如:一本书第一天看了■,第二天看了这本书的■还多4页,第三天看了40页,正好看完,这本书共多少页?
初看这道题较复杂,如何着手呢?可引导学生画出线段图,把这本书平均分成4份,标出第一、二、三天看的页数,如下图:
再引导看图,同学不难发现(4+40)页所对应的分率应为(1―■―■),即■,也就是44页占这本书的■,这样原本较复杂的应用题由于画出了线段图,就轻松地解决了。
此外,还可以采用比的知识解决分数应用题、利用学习单位“1”的量来解决比例尺的应用题……
分数乘整数教学设计【第二篇】
苏教版义务教育课程标准实验教科书第87页《数的运算》“练习与实践”的第1-4题。
教材学情分析:
数的运算主要复习整数、小数和分数的四则运算方法。教材先让学生通过讨论,探索整数、小数和分数的四则计算方法的内在联系:不论是整数加、减法或分数加、减法,计算时都要把相同计数单位的数直接相加、减。在此基础上,再让学生通过互相交流,系统整理整数、小数和分数四则运算方法。
“练习与实践”第1-4题主要练习相关的口算、笔算和估算,以及四则运算的验算。“练习与实践”第1题是要求学生直接写出答案,目的主要是让学生在直接写得数的过程中自主回忆并总结相关的口算方法,促使学生进一步形成相应的口算技能;“练习与实践”第2题通过对比的形式让学生练习相关的笔算,突出小数加减法与整数加减法,小数乘除法与整数乘除法、分数除法和分数乘法的联系和区别,引导学生进一步体会蕴含其中的基本数学方法;“练习与实践”第3题是估算练习,主要是加减法和乘法的估算;“练习与实践”第4题让学生通过具体的计算和验算,自主回忆总结四则运算的基本验算方法,进一步加强验算意识,培养验算习惯。
教学目标:
⑴使学生进一步加深对整数、小数和分数四则运算意义和方法的理解,能正确进行的口算、笔算和估算;体会小数、整数和分数四则运算之间的联系。
⑵进一步促进学生口算技能的形成,增强验算意识,培养验算习惯。
⑶使学生进一步体验数学学习的探索性和挑战性,体验克服困难获得成功的乐趣,增强对数学的好奇心与求知欲,树立进一步学好数学的信心。
教学重点:体会小数、整数和分数四则运算之间的联系。
教学难点:增强验算意识,培养验算习惯。
教学具准备:
教学流程:
一、自主学习,完成练习。
⑴揭示课题。
教师谈话:今天复习“数的运算”。板书:数的运算。
⑵自主练习。
教师谈话:用5-8分钟的时间阅读课本87页,思考:计算整数加减法和小数加减法、分数加减法之间的联系;完成第87页“练习与实践”第1-4题。
二、交流讨论,梳理知识。
⑴理解算法,寻找联系点。
利用“练习与实践”第1-2题中的题目,举例说明整数加减法、小数加减法和分数加减法的计算方法,体会探索整数、小数和分数的四则计算方法的内在联系:不论是整数加、减法或分数加、减法,计算时都要把相同计数单位的数直接相加、减。
⑵交流口算,促进技能的形成。
矫正“练习与实践”第1题的答案。
整数加减法的口算,一般的方法分步加减,鼓励学生说出多种得到结果的方法;小数加减法也是如此;小数乘除法重在让学生体会转化的策略,并掌握转化的方法;分数加减法积累一些口算经验;分数乘法可以和笔算结合;分数除法同样体会转化的策略,掌握转化的方法。
⑶练习笔算,清晰算理。
矫正“练习与实践”第2题的答案,指名学生上黑板板演。
分成整数、小数加法、整数、小数乘除法和分数乘除法来体会。整数、小数加法体会数位对齐的道理;整数、小数乘除法先体会整数乘除法竖式计算的道理,在体会转化的策略和方法;分数乘除法先体会分数乘法的计算方法,在体会分数除法的计算方法。
⑷练习估算,增强估算意识。
矫正“练习与实践”第3题的答案,交流选择答案的理由,体会估算的方法:整十、整百数,四舍五入法。
⑸练习验算,养成习惯。
矫正“练习与实践”第4题的答案,指名学生板演,交流验算的数学根据:运算定律,四则运算间的关系。
⑹谈谈本节课的收获。
“数的运算复习”教学设计(二)
教学内容:
苏教版义务教育课程标准实验教科书第88页《数的运算》“练习与实践”的第5-8题。
教材学情分析:
本节课是《数的运算》复习的第二课时,主要让学生应用整数、小数和分数的四则计算解决简单的实际问题,加深对基本数量关系的理解,体会不同计算方式、方法的应用价值。
“练习与实践”第5题结合解决简单的实际问题,让学生根据已知条件中的数据特点选择合理的计算方式,引导学生进一步体会不同计算方式的特点和价值;“练习与实践”第6题是有关购物的简单实际问题,题中提供的信息较多,学生解答问题时,不仅需要正确理解相应的数量关系,而且需要合理地选择和组合信息;“练习与实践”第7题是有关纳税的简单实际问题;“练习与实践”第8题是求一个数是另一个数百分之几的简单实际问题。解答这两道题,不仅有利于学生进一步体会百分数的意义和应用,而且有利于学生进一步理解相关的基本数量关系,掌握与百分数有关的计算。
教学目标:
⑴使学生进一步加深对基本数量关系的理解,掌握分析和解决实际问题的基本方法,提高解决问题的能力。
⑵进一步促进学生解决实际问题技能的形成,积累解决实际问题的经验,体会不同计算方式、方法的应用价值。
⑶使学生进一步体验数学学习的探索性和挑战性,体验克服困难获得成功的乐趣,增强对数学的好奇心与求知欲,树立进一步学好数学的信心。
教学重点:加深对基本数量关系的理解,掌握分析和解决实际问题的基本方法。
教学难点:加深对基本数量关系的理解,掌握分析和解决实际问题的基本方法。教学具准备:
教学流程:
一、自主学习,完成练习。
⑴揭示课题。
教师谈话:今天我们复习《数的运算》中的“解决简单的实际问题”。板书课题——“解决简单的实际问题”。
⑵自主练习。
教师谈话:用5-8分钟的时间完成课本88页5-8题。学生自主练习,教师巡视。
二、交流讨论,梳理知识。
⑴交流“练习与实践”第5题。
交流答案,了解全班学生的答题情况;交流算式,了解全班学生的思考情况,积累解决问题的经验;交流计算的方法,促进计算技能的形成。
⑵交流“练习与实践”第6题。
交流答案,了解全班学生的答题情况;交流算式,了解全班学生的思考情况,积累解决问题的经验;提出其它问题,并解决问题;交流计算的方法,促进计算技能的形成。
⑶交流“练习与实践”第7题。
交流答案,了解全班学生的答题情况,了解学生计算方法。
⑷交流“练习与实践”第8题。
交流问题1的答案,了解全班学生的答题情况。讨论:怎样比较他们的成绩更合理?他们助跑米摸高的成绩和什么有关系?形成科学的方法:用身高和摸高高度的差来比较他们的成绩更合理;修正答案,在表格下增加新的一栏;交流问题2的答题情况,清晰解决问题的思路。讨论:用助跑摸高的高度是身高的百分之几来比较成绩高低的合理性;计算每位篮球队员的助跑摸高的高度是身高的百分之几,在表格下再增加一栏。
分数乘整数教学设计【第三篇】
从内容上看,两者都以教学应用整数乘法的运算定律进行简便计算为主。分数乘法的简算(图2)中,教材上的第一句话是“分数混合运算的顺序和整数的运算顺序相同”,原因是在学习这个内容之前,学生只是学习了分数乘以整数、一个数乘以分数,没有涉及分数的混合运算。本节课的教学重点,显然是应用学过的整数乘法的运算定律进行分数乘法的简便计算。小数乘法的简算(图1)中,教材上没有类似这样一句话,原因是学生在学习这个内容之前,学习了小数的混合运算。通过前期学习,学生已经知道“小数的四则运算顺序和整数是一样的”(人教版教材五年级上册第11页)。由此可见,两者的编排思路大同小异,编排体例的相似度很高。
一、疑问
1.在两个内容相隔一个学年的情况下, 在学生已经获得了大量的计算技能与技巧的基础上,仍然遵循相同的教材内容编排体例,为什么不考虑学生的学情,包括知识经验、学习能力的变化?是否仍然需要用“继续培养学生的知识迁移能力”来加以解释如此编排的原因?
2.小数运算与分数运算虽说都属于计算教学,且是简便计算的基础,都立足于整数运算定律的掌握。但在具有共性的同时,仍然有其各自的运算特点和运算方法,有其个性化的独特计算技巧。比如×和相比,后一题的简便运算来得更隐蔽,更不容易发现简便的方法。
忽视这种差异与变化,依旧照着老思路编排、备课,不顾及学生能力的进步和提高,不考虑学生的最近发展区进行教学,很难使教学更有效。
那么,如何帮助学生学好分数乘法的混合运算,尤其是分数乘法的简算,有效达成自主运用已有知识,主动获取分数乘法简算的方法,习得简算技能呢?如果说小数乘法的简算是为了培养学生的观察、猜想、验证、迁移的能力,那么,眼下的学习,可否不再进行教材中继续让学生“观察每组的两个算式,看看它们有什么关系”的“观察—猜想”式学习,而尝试走一条“需要—尝试—总结—应用”的学习路径呢?
二、改变
(一)引发需要
1.复习:剪一朵花要用张纸,甲剪了9朵,一共用了多少张纸?
生:×9=2 (张)。
复习分数乘法的计算。
2.改题:剪一朵花要用张纸,甲剪了9朵,乙剪了11朵,两人一共用了多少张纸?(列式计算)
学生板演:
方法1: 方法2: 方法3:
×9 =2 (张) ×9 =2 (张) ×9 + ×11
×11= 2 (张) 2 + ×11 = ×(9+11)
2 +2 =5(张) =2+2 =2+ 2
=5(张) =5(张)
(1)反馈:方法1是怎么想的?方法2的算式中,既有乘法又有加法,这是分数的混合运算。想一想,该按怎样的运算顺序进行计算?方法3中这样可以做吗?为什么?
(2)小结:整数乘法的运算定律,对于分数乘法同样适用。
设计意图:让学生懂得,使用运算定律应该是一种内在的自发的需要,而不是教师或题目规定要简算才简算。同时,让存在于学生头脑中已有的知识、方法外显于课堂学习,成为新课学习和新知的生长点。在交流、辨别这些内隐想法的过程中,学生自然迁移原有的知识经验。
(二)尝试应用
1.尝试完成人教版教材六年级上册第14页例题6。思考:为什么要这样计算?这样做的依据是什么?
2.反馈,使学生明白:在整数、小数的运算中,应用运算定律进行简算时,一般是把整数或小数凑成整十、整百、整千的数使计算简便。但在分数运算中,除了凑整外,还可以利用约分,使数据变小,从而使计算简便。
3.再试。
反馈:第(2)题能运用运算定律吗?使学生明确,括号中能口算的就口算。第(3)题能简便计算吗?怎样才能简算?第(4)题中的和为什么不能约分?该怎么计算这道题呢?
设计意图:这些题目具有一定的典型性和代表性。能简算就简算,能口算就口算。约分时也要想一想,能不能约分,不能看到分数,就马上约分;约分时,还要想一想怎样约分更方便,要看清楚运算符号。特别是第(4)题,学生看到、 就马上约分。借此,帮助学生掌握分数混合运算的顺序,完善学生头脑中已有的关于简算的知识结构,澄清学生在分数乘法计算中的误区:逢题简算,见(分)数约分。
三、思考
(一)具体情况具体分析
在整数、小数的运算中,应用运算定律进行简算时,一般是把整数或小数凑成整十、整百、整千的数使计算简便。然而在分数运算中,却往往根据数据能约分的特点,利用约分使数据变小,从而使计算变得简便。另外,同样是约分,约分的技巧也是教师需要关注的。学生在约分时,是否存在困难,存在什么样的计算障碍,需要教师加以分析指导和进行课堂思辨。在分数运算中,常常涉及1的变化。比如上例,不少学生看不到此题中的1究竟“身”在何处。更想不到这个“1”和之间有什么联系。这种变化,与小数中的1的变化相比,显得更加隐蔽难寻,不易察觉。
因此,分数乘法的简便计算的教材编排,应该考虑到分数运算有别于整数、小数运算的特殊性。具体问题就应该具体分析。
(二)用变化的眼光看学生
经过一年多的学习,学生的知识掌握情况和运用能力一定会发生变化。笔者水平有限,无法查阅到这两个年级的学生在思维能力、迁移能力方面究竟存在怎样的具体变化。但根据学生的学习情况来看,他们的能力水平一定不会停留在原先刚学小数乘法简便计算的能力水平上。教学内容在发生变化,学生的知识容量、能力水平也在发生变化,怎可用不变的逻辑来支配教材内容的体例编排思想呢?如何把准学情的脉搏,使得教材的编排既不落后于学生的思维能力水平,又启发教师的教学设计思考,这应该又是一个颇具思考价值的教学研究方向。这样的教学尝试是否恰当,这样的教后思考是否合理?期待专家和教师们不吝赐教!
分数乘整数教学设计【第四篇】
本次教学设计情景简洁,例题的教学就是教材中的4个橘子图。课始通过一组口算练习导入新课。
学生提出猜想:分数除以整数用分数乘整数的倒数,那么我认为整数除以分数也可以用整数乘这个分数的倒数。
师随即过渡:这只是我们的猜想,猜想需要经过验证才能得出结论。接下来我们根据几个问题来进行验证好吗?
教学例2:
学生通过独立在例题图中画一画,填一填得出当整数除以分子为1的分数时可以用整数乘分数的倒数,符合猜想。
这节课学生的思维非常活跃,课堂中学生享受着思考,享受着探究,享受着智慧火花的碰撞,学生的思维水平得以最大限度的提升,究其原因,我认为源于以下三点。
一、朴实的教学设计。
回顾自己的教学成长经历,曾在各类教学比赛中获过奖,也曾上过各类公开教学,在起初的教学设计时总是追求新课导入形式的新颖,课件制作的唯美,课堂氛围的热闹,随着阅历的丰富及大量教学论著学习和名师课堂的观摩,“大道至简”的教学观念越来越清晰,尤其是听了著名特级教师吴正宪老师的《搭配》一课后,更加理清了自己课堂教学设计追求朴实、自然、智慧的思路,吴老师课上没有课件,没有音乐,只有一支粉笔,以她智慧的启迪、艺术的语言使孩子们享受着数学学习的快乐。这节课的设计即遵循了这一理念,课始开门见山,揭示课题提出猜想,接着就交待本节课学习任务,整个新授环节的画面就是4个橘子图,沿着这一主线展开思考探究,学生的学习目的非常明确,没有任何干扰思维的环节,随着教学内容的深入和教师主导的引领,师生共享数学课堂的精美、智慧。
二、开放的思维空间。
开放的思维空间是教师建立在对学生思维能力充分信任及教学设计时的充分预设在教学形式上的开放。学生是教学活动的主体,教师是组织者和参与者,教师应提供给学生自主探究、思考的思维空间,让学生在观察、操作、讨论、交流、猜测、验证等学习活动中主动获取知识、应用知识。本节课教师主导的设计定位:教学环节的衔接、递进,教学中参与学生的讨论,认真倾听学生的交流发言,适时地帮助梳理,及时给以恰当的鼓励,发自内心的赏识。我做到了,孩子们也做到了,思维的层层深入,发言质量的逐步提升,尤其黄同学能够从倾听别人的发言后得到启发,新知转化为旧知,应用商不变的规律验证,让每位同学都很佩服,不约而同的报以热烈的掌声。“海阔凭鱼跃,天高任鸟飞”,教学活动也同样,教师为学生提供多大思维空间,学生就有多高的能力提升。
三、和谐的课堂氛围。
心理学研究表明,教学环境与学生学习有着必然的联系,愉悦、和谐的课堂气氛能使学生的思维处于最佳的状态。营造一个民主、和谐、融洽的师生共同成长的课堂氛围,充分发挥学生的主观能动性,让学生时刻充满自信,让课堂始终充满乐趣,激活学生的创新思维,培养学生的创新能力,是我教学生活中不懈的追求。课上我习惯用平等的语言与学生交流,“我们该怎么办?”“用你喜欢的方法思考”“你的发言让我很佩服!”,始终充满对学生的信任、鼓励,自然地投入到学生的讨论交流,认真倾听及相互补充、提升,在这样的课堂中学生不会担心因说错而受到老师批评和同学的嘲笑,因而敢想、敢说、敢于与老师辩论,在这样的学习氛围中,智慧当是自然而生。
莎士比亚曾说,简洁是智慧的灵魂。如何引领学生享受数学知识原理、数学符号语言等蕴涵着简洁之美,怀揣教育梦想的我,正走在追求朴实、自然、智慧的简约教学之路。
下一篇:难忘的一课教学设计(精编4篇)