分数乘整数教学设计【优秀4篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“分数乘整数教学设计【优秀4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
分数乘整数教学设计【第一篇】
教学目标 :
1、 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。
2、 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。
3、 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1、 (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )
2、 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )
3、 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)
设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。
二、合作探究(小组合作,解决问题)
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)
(一)探究几分之一乘几分之一的算理算法
1、 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)
求一个数的几分之几,我们可以用乘法来计算。
2、 等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3、 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4、 进行交流反馈
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固
把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。
5、 得出结果
根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?
6、 猜想计算方法
观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?
设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。
(二)探究几分之几乘几分之几的算理算法
1、 尝试猜想
请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。
2、 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)
3、 验证反馈
(1)请几个采用不同验证方法的学生进行一一展示。
(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)
(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。
4、 得出结论
看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。
三、展示交流(展示交流,调拨归纳)
简化计算过程
根据我们所得的结论,试着解决下面的问题
出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。
(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?
(2)乌贼30分钟可以游多少千米?
1、 读题,独立列式并解答。
2、 反馈
(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。
(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。
(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。
3、 练习
例4做一做1。
设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。
四、拓展总结(应用拓展,盘点收获)
1、 基础练习
(1)先看数再计算(练习一6、7两题)
反馈校对、纠错。
在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。
预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。
设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。
(2)完成例3、例4做一做剩下的题
反馈校对、纠错。
在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。
2、 练习提升
在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?
○ ○ ○ ○
反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。
(1)题1、题3主要引导学生从分数乘法的意义来理解;
(2)题2、题4主要是对分数计算方法的巩固。
设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。
3、拓展总结
这节课我们学习了什么?我们是怎样得出这些结论的?
没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。
设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。
分数乘整数教学设计【第二篇】
教学内容:P39-40例2,“练一练”,练习八第6-11题
教学目的:
1、让学生理解求一个数的几分之几是多少可以直接用乘法来计算
2、促使学生加深对相关数量关系的理解,提高解决简单实际问题的能力 教学重点难点:使学生理解求一个数的几分之几是多少可以用乘法来计算 教学资源:例2的图、小黑板 教学过程:
一、导入
1、出示例2 学生看图理解题意 说说题中两个分数的具体含义 明确:以10朵绸花为单位“1”,红花的朵数是10朵的1/2,绿花的朵数是10朵的2/5
二、探索
1、学生尝试解决第(1)个问题,求红花的朵数 学生交流解决方法,明确求红花的朵数可以用除法来计算,还可以用乘法计算 由此列出乘法算式,并让学生再次算出结果
2、解决第(2)个问题 先让学生在图中按要求圈一圈 理解:求绿花有多少朵,就是把10朵花平均分成5份,求这样的2份是多少 让学生已有的知识来解答 交流:求10多的2/5是多少,也可以用乘法来计算
3、引导学生比较两种计算方法 使学生明白:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少 计算10*2/5时,要先约分,实际上也就是先用10/5,求出1份是多少,再乘2求出2份是多少
4、小结:求一个数的几分之几是多少,可以用乘法计算
5、“练一练” 第1题先让学生根据题意涂色,在列式计算 第2题先让学生理解题意,再填空
三、练习
1、练习八第6题 先让学生独立解答后再交流,比较,教案 分数与整数相乘,教案《教案 分数与整数相乘》。
体会到:求一个数的几分之几是多少与求几个相同数连加的和,都可以用乘法来计算
2、练习八第7题 学生先独立计算再交流
3、练习八第8题 学生独立解答并说说是怎样思考的
4、练习八第9题 先理解:表中的分数都是与四月份的天数比较后得到的,都以“30天”作为单位“1”。 估计天数的多少,可以直接比较分数几个分数的大小。 将计算结果与估计结果进行比较,看估计是否正确。
5、练习八第10题 先让学生看图计算,再组织学生说说三个问题有什么相同的地方。
6、练习八第11题 学生先独立解答,再进一步思考:如果不计算,你能比较出参加三项比赛的人数哪一项最多,哪一项最少吗?
四、全课总结
分数乘整数教学设计【第三篇】
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学难点
引导学生总结分数乘整数的计算法则。
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5 个12 是多少?10 个23 是多少?25 个70 是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法: + + = = =
×3 这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
为什么只把分子与整数相乘,分母10 不和3 相乘?
二、提出问题
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?
1、读题,说说 块是什么意思?
2、根据已有的知识经验,自己列式计算
三、解决问题
(一)学生汇报,并说一说你是怎样想的?
方法1 : + + = = = (块)
方法2 : ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的。
区别:一种方法是加法,另一种方法是乘法。
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3 个 相加,因为加数相同,写成乘法更简便。
(四) ×3 表示什么?怎样计算?
表示3 个 的和是多少?
+ + = = = = ,用分子2 乘3 的积做分子,分母不变。
(五)提示:为计算方便,能约分的要先约分,然后再乘。
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说明分数乘整数的意义与整数乘法的意义相同,都是表示求几个相同加数的和的简便运算。
(二)分数乘整数计算方法:用分子和整数相乘的积做分子,分母不变。能约分的先约分。
五、拓展应用
(一)基本练习
1、改写算式
+ + + = ( )×( )
+ + + + + + + = ( )×( )
2、只列式不计算:3 个 是多少? 5 个 是多少?
3、计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
(二)综合练习
应用题
(1 )一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?
(2 )美术馆要进行美术展览,有5 张画是边长 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?
(三)拓展练习
1、一条路,每天修 千米,4 天修多少千米?
2、一条路,每天修全路的 ,4 天修全路的几分之几?
六、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
例1、小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3 人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3 人一共吃了 块。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
分数乘整数教学设计【第四篇】
教学内容:
分数和整数相乘的计算
教材分析:
在已学过的整数乘法的意义和分数加法计算的基础上,教学分数乘整数的意义和分数乘整数、整数乘分数的计算方法。
学情分析:
对于分数乘法的意义与整数乘法的意义的区别还有待进一步强调,学生在计算时会出现不先约分或与分母相乘的错误。
教学目标:
掌握分数和整数相乘可以表示求几个相同加数的和的简便运算的意义,能运用分数和整数相乘的计算法则进行有关计算,并且知道先约分后计算比较简便。
教学重点:
分数乘法的意义,分数与整数相乘的计算方法。
教学过程:
一、复习
1、把下列分数化成小数。
2/5 3/20 3/8 7/25 1/4 9/50
说说分母是20、25、50的分数化小数的简便化法。如何判断一个分数能不能化成有限小数。
2、说说约分的依据,再对下列分数进行约分。
3/12 4/8 16/20 26/39 5/14
3、计算后再说说下列各组分数加法各有什么特点。
1/6+2/6+3/6 2/3+1/12 3/10+3/10+3/10
二、新授
1、分数乘整数的意义
(1)推导
由3/10+3/10+3/10,得出3个3/10相加,可以写成3/10×3,说说3/10×3所表示的意义。再由1/5+1/5+1/5+1/5 可写成一个怎样的算式。说说1/5×4所表示的意义。
(2)讨论
1/5+2/7能不能也写成一个乘法算式,为什么?
(3)得出分数乘整数的意义。
表示求几个相同加数的和的简便运算。b/a×c即表示c个b/a的和是多少。
(4)练习
说说下列各式的意义
1/4×7 3/5×8 4/9×3 5/12×3
列出下列各题的算式
3个7/9的和是多少? 4与3/8的和是多少? 5/8的9倍是多少?
2、分数和整数相乘的计算方法
(1)推导
3/10+3/10+3/10=9/10,所以3/10×3=9/10.用小数乘法也可来验证,×3=。观察这个9/10是怎样得来的。再举例:2/5×7,由意义可得到2/5+2/5+2/5+2/5+2/5+2/5+2/5=2+2+2+2+2+2+2/5=2×7/5=14/5。再用小数乘法来进行验证×7=。
(2)猜测
说说下列各式的结果
1/5×4 3/5×2 6/7×3 3/17×5 4/15×4
(3)让学生说说分数和整数相乘的计算方法。得出b/a×c=b×c/a
(4)归纳出分数和整数相乘的计算方法。
由b/a×c=b×c/a,说说c×b/a等于什么。得出分数和整数相乘,只要用分数的分子和整数相乘的积作分子,分母不变。
(5)练习
3/5×4=( )×( )/5 ( ) ×5/12=( )×3/( )
( )/5×( )=3×4/( ) 3/( )×( )=( )×7/16
(6)出示例1请学生尝试练习。
(7)明确先约分后计算,使计算简便。
注意 a、在乘的情况下才能约分 b、约分是在分子和分母之间进行的
三、巩固
1、课本第三页上的练一练。
2、课本第7页上的练习一第1、2题,第3题的第一行。注意一定要先约分后计算。
四、
1、分数乘整数的意义。b/a×c表示c 个b/a是多少
2、分数和整数相乘的计算方法。b/a×c=c×b/a=b×c/a,用分数的分子和整数相乘的积作分子,分母不变。
3、注意先约分后计算可以使运算来得简便。分清4/5×5和4/5+5的区别。约分只有在乘法的情况下才能进行,而且是在分子和分母之间进行的。
五、作业
课本第7页练习一第3题的第二行,第4、5、6、7题
六、教后小记
学生对分数乘整数的意义掌握较好,但有部分学生对于c个b/a的和与c与b/a的和相混淆。计算的法则掌握情况也较好,不过有个别学生出现整数和分母约分,还有极个别学生把加法也用乘法的方法来计算。可以看出学生对于所学内容的理解运用还有待进一步的加强。
下一篇:《掌声》教学设计精编4篇