《抽屉原理》教学设计(优推4篇)
【前言导读】此篇优秀范文“《抽屉原理》教学设计(优推4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
抽屉原理教学设计【第一篇】
教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
教学重、难点
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程
一、问题引入。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知
(一)教学例1
1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)
教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)
总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
2.完成课下“做一做”,学习解决问题。
问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究
(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的`方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
(二)教学例2
1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)
2.学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。
问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。)
总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。
三、解决问题
四、全课小结
抽屉原理教学设计【第二篇】
教学内容:
教材简析:
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
学情分析:
六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。激趣是新课导入的抓手,喜欢和好奇心比什么都重要,游戏,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
教学目标:
1、使学生初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、使学生经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3、使学生通过“抽屉原理”的灵活应用感受数学的魅力;提高解决问题的能力和兴趣。
教学重点:
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程:
一、课前游戏,导入新课。
游戏请5名同学到前面来,老师这有4张凳子,老师喊123开始,要求每位同学都必须坐在凳子上,引导:5位同学坐在4张椅子上,不管怎么坐,总有一把凳子上至少坐两个同学。
我们刚才做了个小游戏,但小游戏蕴含着一个有趣的数学原理。今天我们就来研究这个有趣的数学原理——抽屉原理。
[设计意图:把抽象的数学知识与生活中的游戏有机结合起来,使教学从学生熟悉和喜爱的游戏引入,让学生在已有生活经验的基础上初步感知抽象的“抽屉原理”,提高学生的学习兴趣。]
二、通过操作,探究新知
(一)活动一
1、出示题目:把4根小棒,放在3个杯子里,怎么放?有几种不同的放法?
(板书:小棒4杯子3)
提出要求:把所有的摆法都摆出来,看看你会有什么发现?
(1)同桌之间互相合作,动手摆,把各种情况记录下来。
(2)指名一位同学展示不同摆法,教师板书。(4,0,0)(3,1,0)(2,2,0)(2,1,1),
(3)引导学生观察发现:不管怎么放,总有一个杯子里至少有2根小棒。(板书:总有一个杯子里至少有)
(4)师生共同理解“总有”“至少”有2枝什么意思?
(5)明确:刚才同学们把所有摆法一一列举出来,得到了这样的结论,我们称之为“枚举法”。
[设计意图:学生通过自己动手操作,在实验中、合作中、讨论中发现规律,分析问题的形成,把动脑思考与动手操作相结合,独立思考与小组合作相结合。让同学之间互相帮助,相互提高,让问题在学生的探究中得到解决。]
2、要把6根小棒放进5杯子里,你感觉会有什么结果呢?
(1)启发学生猜想结果
把6根小棒放入五个杯子里,你感觉一下,不要动手摆,你感觉一下会有什么样的结论?
(2)引导学生选择合适的方法
提出要求:想一个快速而又简单的方法,只摆一种情况,你就可以得到这个结论?
(3)学生尝试操作验证。
(4)全班交流,操作演示。
学生活动后组织交流:先每个杯子摆一根,每个杯子放1跟,5个杯子,就已经放了5根,还有1根不管怎么放,总有一个杯子至少有两根小棒
预设:如遇到每个杯子摆两根,有的杯子空的,这样有说服力吗?有的杯子还空着,要先把每个杯子都装上小棒才行。
(5)明确结论:把6根小棒放进5个杯子里,不管怎么放,总有一个杯子里至少有2枝小棒。
3、课件出示:
把100根小棒放进99个杯子呢?
谈话:要不要也准备100根小棒和99根杯子呢?可以怎么办?
引导用假设法进行思考:假设每个杯子放1跟,99个杯子,就已经放了99根,还有1根不管怎么放,总有一个杯子至少有2根小棒。
这也是数学中一种很重要的方法“假设法”。
引导学生观察小棒数和杯子数,你有什么发现?
明确:这里的小棒数都比杯子数多1,当小棒数比杯子数多1时,总有一个杯子至少放了两根小棒。
[设计意图:注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。在猜测的基础上进行实验和推理,从“枚举法”到“假设法”,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。]
(二)活动二
谈话:接下来,我们把数学书当做物体数放入抽屉里,看看又有什么发现?
课件出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
板书:书抽屉总有一个抽屉放入算式
5235÷2=2……1
最新《抽屉原理》教学设计【第三篇】
知识技能
1.理解最简单的抽屉原理及抽屉原理的一般形式。
2.引导学生采用操作的方法进行枚举及假设法探究。
过程方法
经历抽屉原理的探究过程,初步了解抽屉原理。
情感态度价值观
体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力。
教学重、难点经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程
一、问题引入。
师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来?
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知
(一)教学例1
1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢?
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)
教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢?
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)
《抽屉原理》教学设计【第四篇】
一、教学设计
1.教材分析
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
2.学情分析
“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
3.教学理念
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
4.教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
5.教学重难点
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
6.教学过程
一、课前游戏引入。
上课前,我们先来热身一下,一起来玩抢椅子的游戏。
这有4把椅子,请5位同学上来参加游戏,游戏规则是:在老师说开始时,5位同学绕着椅子走,当老师说停的,5位同学都要坐在椅子上。
为什么总有一张椅子至少坐两个同学?
在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。(板书课题)
二、通过操作,探究新知
(一)探究物体数比抽屉数多1的情况
1、把3根小棒放进2个杯子中,有几种不同的放法?(1)同桌合作,想一想,摆一摆,并记录下来。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?(总有一个杯子中至少放进2根小棒)你是怎么发现的?
(4)“总有”什么意思?(一定有)
(5)“至少”有2根什么意思?(不少于2根)
小结:把3根小棒放进2个杯子中,不管怎么放,总有一个杯子中至少放进了2根小棒。
2、要把4根小棒放进3个杯子里,有几种放法?
(1)请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)从四种放法,同学们会有什么发现呢?(总有一个杯子里至少有2根小棒)
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个杯子里放进了2根小棒”。
3、类推:把6根小棒放入5个杯子中,总有一个杯子中至少有几根小棒,为什么?
还用不用把所有的摆法再一一列举出来,有什么方法只摆一次就能证明这个结论。(平均分)
为什么用平均分的方法就能证明这个结论?余下的。小棒怎么分?
怎样用算式表示?(6÷5=11,商1表示什么,余1又表示什么?)把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
4、从刚才我们的探究活动中,你有什么发现?(当物体数比抽屉数多1,就总有一个抽屉中至少放进了2个物体。)
7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?
过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。
(二)探究物体数比抽屉数多几倍还多的情况
1、研究把5根小棒放进3个杯子
(1)把5根小棒放进3个杯子,总有一个杯子中至少有几根小棒?
(2)可以怎样分,用平均分的方法证明一下。先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。
(4)可以把我们的想法用算式表示出来:5÷3=1…2(商1表示什么,余数2表示什么)2+1=3表示什么?
2、类推:如果把9根小棒放进4个杯子中,15根小棒也放进4个杯子中,会有什么结论?
3、怎样求至少数?(商+1)
3、小结:当物体数比抽屉数多几倍还多的情况,用物体数除以抽屉数,有余数时,至少数=商+1.
4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。 “抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
5、做一做:
(1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?
(先让学生独立思考,在小组里讨论,再全班反馈)
(2)11个小朋友同行,其中至少有几个小朋友性别相同?
(3)从电影院任意找来15个观众,至少有几个人属相相同?
(找到题中什么当抽屉,物体数是多少,运用抽屉原理列出算式,并解释原因)
三、迁移与拓展
1、下面我们一起来放松一下,做个小游戏。
我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?
2、用三种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂
色相同。
得出结论:当物体数除以抽屉数,整除时,至少数=商
四、总结全课这节课,你有什么收获?
二、教学反思
新一轮的课程改革,把原本在奥数教材中出现的一些开发智力、开阔视野的数学思维训练内容也加入到数学教材中,以“数学广角”单元的形式出现。“抽屉原理”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。这对我们数学教师的教学提出了挑战。通过课堂实践,感受颇深,反思我的教学过程,有几下几点可取之处:
1、创设情境,从学生熟悉的素材开始激发兴趣,
兴趣是最好的老师。课前“抢凳子”游戏,简单却能真实的反映“抽屉原理”的本质。通过猜测,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、建立模型,本节课充分放手,让学生自主思考,恰当引导
教师是学生的合作者,引导者。在活动设计中,我注重学生经历知识产生、形成的过程。4根小棒放进3个杯子的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:小棒数比杯子数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、解释应用,深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。回顾整节课我觉得还有许多不足之处,学生对至少数的理解还很模糊,只是按照程式推导出至少数的求法,并没有真正体会出抽屉原理的本质。没有给学生足够思考的空间,只是有部分学生说出就给出结论,面向的应是全体学生,这是在我教学过程中还应加强的部分。
上一篇:《田忌赛马》教学设计精编3篇