六年级数学一个数乘分教学设计精彩8篇

网友 分享 时间:

【请您参阅】下面供您参考的“六年级数学一个数乘分教学设计精彩8篇”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

六年级数学一个数乘分教学设计【第一篇】

1、了解储蓄的有关知识,能综合应用相关知识合理存款。

2、经历调查、解决问题的过程,体验合作探究的学习方法。

3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。

了解各种存款方式的利率和相关规定,设计合理的存款方案。

能综合应用条件灵活解决问题。

综合实践《合理存款》

问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)

课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。

设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。

根据学生调查的信息设计存款方案。

学生以小组合作学习的方式共同设计方案,填写下表。

定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

六年级数学一个数乘分教学设计【第二篇】

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:

理解数量关系。

教学难点:

根据多几分之几或少几分之几找出所求量是多少。

教具准备:

多媒体课件。

教学过程:

一、旧知铺垫(课件出示)。

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去。

(2)用去一部分钱后,还剩下。

(3)一条路,已修了。

(4)水结成冰,体积膨胀。

(5)甲数比乙数少。

2、口头列式:

(1)32的是多少?

(2)120页的是多少?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

六年级数学一个数乘分教学设计【第三篇】

教学内容:

义务教育课程标准北京实验版教科书六年级上册《存款方案》。

教学目标:

1、了解储蓄的有关知识,能综合应用相关知识合理存款。

2、经历调查、解决问题的过程,体验合作探究的学习方法。

3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。

教学重点:

了解各种存款方式的利率和相关规定,设计合理的存款方案。

教学难点:

能综合应用条件灵活解决问题。

综合实践《合理存款》。

一、确定问题。

问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)。

二、收集信息。

课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。

设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。

三、方案设计。

根据学生调查的信息设计存款方案。

学生以小组合作学习的方式共同设计方案,填写下表。

定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

六年级数学一个数乘分教学设计【第四篇】

苏教版义务教育教科书《数学》六年级上册第34~35页例4~5、试一试和练一练,第37页练习六第1~5题。

1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

整数乘分数的计算法则。

教具:

长方形纸、水彩笔。

一、创设情境。

二、组织探究。

1、教学例4出现教材中的图形。

然后问:画斜线部分是的几分之几?又是这个长方形的几分之几?

由此明确:的是,的是。

启发学生进一步思考:求的是多少,可以怎样列式?

求的呢?

师问:你能列算式并看图填写出书中的结果吗?

打开书p34完成。

提示:根据填的结果各自想想怎样计算分数与分数相乘?

学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母。

2、教学例5。

(1)让学生说说×和×分别表示的几分之几?

你能用前面得出的结论计算这两道题吗?

学生试做。

订正完后问:你能用什么方法来验证你的计算结果呢?

(2)验证比较。

让学生在自己准备的长方形纸上先涂色表示。

再画斜线表示的和的。

学生动手操作,教师巡视对学困生进行指导。

看看操作的结果与你计算的结果是否一致?

学生观察比较。

3、归纳总结。

比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?

得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

三、练习。

1、完成的试一试。

提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算。

通过交流进一步明确计算分数与分数相乘的计算方法。

四、分数与分数相乘的计算方法的推广。

同学们,下面着几道题你回计算吗?

出示:

请同学们先完成p35的填空,提醒学生把整数看作分母是1的分数来计算。

讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

学生分组讨论。

明确:(1)整数可以看作分母是1的分数,所以分数。

与分数相乘的计算方法也适用于分数和整数相乘。

(3)也可以整数与分数直接进行约分后再计算。这样更简便。

教师进行示范如p35。

2、练习。

完成p35的练一练。

引导学生用直接约分的方法进行计算。

五、综合练习。

1、做练习六的第1题。

先在图中画一画再列式计算。

2、做练习六的第3题。

说出错的原因。

3、做练习六的第4题。

看谁算的最快。

六、全课小结。

通过这节课的学习,你有什么收获?还有什么疑惑?

七、作业。

练习六的第2、5题。

六年级数学一个数乘分教学设计【第五篇】

人教版六年级上册第八单元总复习第2课时《百分数的整理与复习》。“百分数”这一单元主要包括百分数的意义和写法,百分数和分数、小数的互化以及用百分数解决问题等内容,是在学生学习了整数,小数,特别是分数概念和用分数解决实际问题的基础上进行教学的,同分数有着密切的关系。在总复习时,应将复习重点放在百分数的应用方面,同时要注重与分数乘除法问题的对比,分析百分数问题与分数乘除法解决问题在解题思路上的一致性,加强知识间的联系,深化学生对知识之间内在联系的理解,促进学生原有认知结构的优化。通过总复习,既可以帮助学生构建合理的知识体系,也可借助解决生活中的实际问题培养学生应用数学的意识。

设计理念。

百分数在实际生活中有着广泛的应用,如发芽率、合格率等。所以同学们必须熟练掌握本单元的基础知识,才能轻松地运用这些知识来解决生活中的问题。让学生亲身体验自主探索、合作交流基础上,经历体验问题的形成和解决过程,引发学生对百分数问题的结构特征,解题策略和规律的深层次思考,克服学生消极接受的惰性,培养学生发现问题,解决问题的意识和能力,促进学生主动构建自身知识体系。

教学策略。

本节课通过获取信息,提出数学问题,解决问题,集体交流,小结方法等环节,引导学生自己对百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力,使“生活化”、“数学化”得到和谐统一。

教学目标。

知识与技能:

1、通过对百分数单元知识的归纳和整理,巩固所学的知识,加深对百分数意义的理解,感受百分数在生活中的应用,并运用所学知识解决百分数问题。

2、在百分数知识的迁移与综合运用中使学生经历一个整理信息、利用信息的过程,培养学生分析、综合、比较、抽象、概括等初步逻辑思维能力。使学生体会到数学的价值。

3、在百分数单元复习的过程提升数学思考。发展学生思维,激发起进一步学习的兴趣。

4、使学生形成积极的学习情感,养成良好的学习习惯。

过程与方法:

经历百分数的回顾和应用过程,体验归纳整理、构建知识体系的方法。

情感、态度、价值观:

体验数学知识间的相互联系,感受数学知识在生产、生活中的应用价值,培养学生应用数学的意识及乐学的情感。

教学重点难点。

重点:1、掌握百分数的意义,以及与分数、小数之间的联系。

2、理解百分数应用题的解题思路,找准量和率之间的对应关系是教学中的重点。

难点:税后利息的计算。

教学准备。

多媒体课件。

教学过程。

(一)复习百分数的意义。

教师谈话:我们上段时间学习的哪些知识?这节课,我们就一起来复习百分数的相关知识。(板书:百分数的整理与复习)。

1、复习百分数的意义。

(表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫百分比或百分率。)。

2、判断:“4/5=80%,4/5米=80%米。请同学们说明理由。(分数既可以表示一个数,也可以表示两个数的比;百分数只能表示两个数的比,后面不能带单位名称。)。

3、复习分数、小数、百分数之间的互相转化的方法以及注意事项。

小数化成百分数:先把小数点向右移动两位,同时添上百分号。

百分数化成小数:先把百分号去掉,同时把小数点向左移动两位。

分数化成百分数:先把分数化成小数,再化成百分数。

百分数化成分数:先把百分数写成分母是100的分数,再化简。

(二)根据信息,请同学们提出相关的百分数问题。

(小组讨论、交流)。

老师今年36岁,丁俊同学今年12岁。

问题:1、老师的岁数是丁俊同学的百分之几?

2、丁俊同学的岁数是老师的百分之几?

3、老师的岁数比丁俊同学的大百分之几?

4、丁俊同学的岁数比老师的少百分之几?

(三)复习稍复杂的百分数应用。

我校男生人数比女生少10%。

问:1、男生人数是女生人数的百分之几?

(指名回答)。

2、已知女生人数有500人,求男生有多少人?

(单位“1”是已知的)。

3、已知男生人数有450人,求女生有多少人?

(单位“1”是未知的)。

(四)复习百分数在生活中的应用:折扣、纳税、利息。

1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。

问:什么等于折扣?

2、缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。

问:应纳税额等于什么?

3、存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金之间的比值叫做利率。

问:什么是利息?如何计算利息?在计算利息时要注意什么?

(五)综合练习:

2、昨天我们班有2人请假了,大家能计算出昨天我们的出勤率吗?

问:出勤率等于什么?

(六)课堂小结:

今天我们复习了什么内容?你有哪些收获?

我们今后要用99%的努力+1%的灵感去创造100%的成功。

板书设计。

百分数的整理与复习。

意义互化应用找准单位“1”

单位“1”是已知(用乘法计算)。

单位“1”是未知(用除法或方程计算)。

六年级数学一个数乘分教学设计【第六篇】

知识与技能:

1、理解比的基本性质。

2、正确应用比的基本性质化简比。

过程与方法:

1、利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主探讨,掌握化简比的方法并会化简比。

情感态度与价值观:

初步渗透事物是普遍联系的辩证唯物主义观点。

理解比的基本性质,推倒化简比的方法,正确化简比。

正确化简比。

写有例题和练习题的小黑板。

一、导入。

1、比与分数、除法的关系。

2、复习分数的`基本性质和商不变的性质。

老师:请大家回忆一下,分数有什么性质?除法又有什么性质?它们的内容分别是什么?

二、教学探究。

1、猜想。

汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以同一个数(0除外),分数的大小不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以同一个数(0除外),商不变。因此,比的前项和后项同时乘或除以同一个数(0除外),比值不变。

2、验证。

以小组为单位,讨论、验证一下刚才的猜想是否正确。

学生汇报。

3、小结。

经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

板书课题:比的基本性质。

4、化简比。

老师:应用比的基本性质,我们可以把比化成最简单的整数比。

出示例1的第(1)题。

让学生在练习本上写出一小一大两面联合国旗长和宽的比,15:10和180:120。

提问:你怎样理解最简单的整数比这个概念?

学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

让学生自己尝试把这两个比化成最简单的整数比,然后集体订正答案。

15:10=(15÷5):(10÷5)=3:2。

180:120=(180÷60):(120÷60)=3:2。

提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?(说明两面国旗大小不同,形状相同。)。

出示例1的第(2)题。

(2)把下面各比化成最简单的整数比。

1/6:2/:2。

让学生独立试做,教师巡视指导,请两名学生在黑板上板演。

师生共同讲评。

1/6:2/9=(1/6×18):(2/9×18)=3:4。

提问:为什么要乘18?可能会有学生想到不同方法,教师应给予肯定。

:2=(×100):(2×100)=75:200=3:8。

或(×4):(2×4)=3:8。

老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

三、堂堂清测试。

1、完成教材第46页的“做一做”,集体订正。在校对、交流的基础上,引导学生对化简比的方法进行小结。

2、完成教材第48页练习十一的第4。

六年级数学一个数乘分教学设计【第七篇】

1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。

2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。

分数除法意义的理解和分数除以整数的算法的探究。

分数除以整数的算法的探究。

课件,平均分成5份的长方形纸一张。

一、复习

复习整数除法的意义

引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

根据已知的乘法算式:5×6=30,写出相关的两个除法算式。

二、新授

(一)初步理解分数除法的意义。

1、如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?

学生试着列出算式。

2、归纳概括分数除法的意义。

(二)分数除以整数。

1、出示例1、引导学生分析并用图表示数量关系。

问:求每份是这张纸的几分之几,怎样列式?

2、列式计算。

学生折一折,算一算。

3、理清思路。

学生说思路

4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。

三、练习

第30页做一做

四、作业练习

教材p34第1、3、4题。

五、总结

今天我们学习了哪些内容?

六年级数学一个数乘分教学设计【第八篇】

教学内容:

变化的量。

教材简析:

“变化的量”是学习正比例与反比例的起始课。教材通过系列情境,结合日常生活中的问题,让学生体会变量和变量之间相互依存的关系,并尝试对这些关系进行大致的描述,从而拓宽学生理解正比例、反比例的背景。

教学目标:

知识技能:结合具体的数学情境认识“变化的量”,并通过描述活动,了解其中一个变量是怎样随着另一个变量而变化的。

数学思考:通过举例与交流活动,找到生活中互相依存的变量,描述日常生活中一个变量是怎样随着另一个变量的变化而变化的。

问题解决:能从图表中获取信息,正确表述量的变化关系;或用数学关系式表示两个变量之间的关系。

情感态度:知道列表与画图都是表示变量关系的常用的方法,积累表征变量的数学活动经验;从大量生活情境中获取数学学习的兴趣和动力。

教学过程:

一、情境引入。

1、出示一则新闻信息:xxxx年11月14日零时,国家发改委发布了最新的国内成品油最高零售限价,受国际油价持续大跌的影响,国内也出现了罕见的油价“八连跌”现象。

2、交流:你知道油价持续下跌会产生怎样的影响吗?

3、思考:从这些影响中你发现了什么?(生活中存在着大量相互依存的变量)。

4、揭示课题:今天我们就来研究像这样相互依存的变化的量。(板书课题)。

二、探究新知。

1、发现生活中特定时期相互依存的变化的量。

出示妙想6岁前的体重变化的文字信息。

(1)提问:你有什么方式能将这些信息更加简洁明了的表示出来吗?

(2)观察:出示淘气和笑笑呈现信息的.表格和图,口答哪些量在发生变化?再说说用表格和图呈现两个变量分别有什么优点。

(3)交流:妙想6岁前的体重是如何随年龄增长而变化的?

(5)反馈:练一练第1题,说说圆柱的体积和高之间的变化关系。

2、了解生活中“周期性”重复出现的相互依存的变化的量。

(1)提问:出示情境图2,说一说,图中有哪两个变量?这两个量是怎样变化的?

(2)交流:学生独立看图,并口答教材中的三个问题。

(3)反馈:完成练一练第2题。

(4)讨论:与上一题比较,这里相互依存的变化量变化规律有什么异同点?

3、感知生活中用数学关系式表示的相互依存的变化的量。

出示练一练第3题:蟋蟀叫的次数与气温之间的关系。

(2)引导比较:这里两个量之间的关系与前面的又有什么不同呢?

(3)反馈练习:将练一练第1题体积与高之间的关系用数量关系式表示出来。

三、综合应用。

2、你还能找出生活中一个量随着另一个量的变化而变化的例子吗?

四、全课小结。

小结本节课所学知识,铺垫下一课时。

板书设计:

变化的量变化形式。

年龄体重特定区域。

时间体温周期性。

nt数量关系。

22 2982394
");