勾股定理小论文【推荐4篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“勾股定理小论文【推荐4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
勾股定理小论文【第一篇】
何谓勾股定理?勾股定理又叫毕氏定理,即直角三角形两直角边的平方和等于斜边的平方。据考证,人类对这条定理的认识已经超过了40。据史料记载,世上有300多个对此定理的证明。勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了20多种精彩的证法。这是数学中任何定理都无法比拟的。
本文中仅介绍勾股定理的证明方法中最为精彩的两种证明方法,据说分别来源于中国和希腊。
1、中国方法:画两个边长为 的正方形,如图,其中 为直角边, 为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以 为边,右图剩下以 为边的正方形。 于是得 。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2、希腊方法:直接在直角三角形三边上画正方形。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。
值得指出的是,由于《几何原本》的广泛流传,欧几里得的证明是勾股定理所有证明中最为著名的。 为此,希腊人称之为“已婚妇女的定理”,法国人称之为“驴桥问题”,阿拉伯人称之为“新娘图”、“新娘的坐椅”。 在欧洲,又有人称之为“孔雀的尾巴”或“大风车”等,这些可能是从其几何图形得到的灵感吧
总之,在探究勾股定理的道路上,我们走向了数学殿堂,并且会越走越远……
勾股定理的研究性论文【第二篇】
摘 要:勾股定理又名商高定理,也名毕达哥拉斯定理。从两千多年前至今都有人在研究,其证明方法多达500种,并且在实际生活中有广泛应用。在中学阶段,勾股定理是几何部分最重要的定理之一,不仅是教学的重点、难点、考点,而且也是几何学习的基础,除此之外,还可以激发学生学习兴趣,开拓学生知识面,提升学生思维水平。
关键词:勾股定理 中学生 心理特征 证明方法 解题思路。
一、勾股定理介绍
在古代中国,数学着作《周髀算经》开头,记载着一段周公向商高请教数学知识的对话:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高答曰:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”这是中国古代对勾股定理的最早记录。在《九章算术》中,“勾股术曰:勾股各自乘,并而开方除之,即弦.又股自乘,以减弦自乘,其余开方除之,即勾.又勾自乘,以减弦自乘,其余开方除之,即股”。毕达哥拉斯参加一次餐会,餐厅铺着正方形大理石地砖,他凝视这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和“数”之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。这是西方对毕达哥拉斯定理最早的描述。
二、中学生心理特征
中学阶段的学生正处于发育的第二高峰期,在生理和心理上都有很大的变化,在心理上的普遍特征:1.有意注意发展显着,注意的范围扩大,稳定性和集中性增强;2.记忆力随着年龄的增长而增加,对图片、音频等感性的记忆较好,对公式、定理等纯理论的记忆较差,尤其是数学学科,基础的理论公式很多,学生很容易记混淆;3.抽象思维的能力有提升,处于形式运算阶段,但对事物的思考基本还停留在事物表面,没有完全形成自主有意识的抽象思维倾向;4.自制力有所提升,他们开始喜欢崇拜有意志力、自控力的人,但是自身的自制力比较薄弱。虽然我并不赞成把学生分为优等生、中等生和差等生,但是在实际的教育中,是存在这样的分化,并且学生都存在上述的四个普遍特征,也存在一些差异:学习能力、思维方式、自制力等不同。优等生在各个方面普遍比中等生好,而中等生又普遍比差等生好,我们应该从这些差异点着手,因材施教,激发学习兴趣,提升学习能力,引导自主学习,减少学生之间的差异,使学生健康成长,实现自我价值。
三、勾股定理的典型证明方法
勾股定理是全人类文明的一个象征,也是平面几何学的一颗明珠,在实际生活中也有广泛应用。两千年以来,人们从来没有停止对勾股定理的研究。据不完全统计,勾股定理的证明方法多达500种,每一种方法都有优点,每一种方法都包含全人类的智慧。但在中学教学中,我们不可能做到面面俱到,只能教给学生一些典型、基础的证明方法,通过教学引导学生自主学习,自主探索。
说明:第一种证明方法有两个要点:1.几何图形的变化;2.确定等量关系。初中生可以理解这两个要点,因此,我们可以以探究的形式让学生自己做,一来可以提高学生自主学习的兴趣,二来也符合当下的教育理念——探究学习。对于基础较薄弱的学生而言,在掌握基本知识点的同时,可以增加他们学习数学的兴趣,减少对数学的畏惧情绪,对于基础较好的学生而言,他们可以通过这种证明方法,自学勾股定理的基本知识。第二、三种方法分别结合了相似三角形和圆的基础知识点,在教授相似三角形和圆的`相关定理时,提出他们在勾股定理证明中的运用。把前后知识点串联起来,差等生可以回顾勾股定理,加深理解,激发他们学习的兴趣,中等生和优等生可以构建不同知识点之间的联系,形成知识体系,提升他们的抽象思维能力,对后继学习有很大帮助。
四、勾股定理的典型解题思路
本题先通过不变量寻找等量关系,再利用勾股定理求解问题。引导基础较差的学生通过折叠寻找图形中的不变量,建立等量关系,提升其处理数学问题的信心,学会一些数学的基本方法和思维方式;引导基础较好的学生复习对称图形的性质,适当提炼解题思路,构建知识体系。
说明:题目本身很简单,由题目容易想到勾股数3、4、5,而忽略分类讨论。我们应引导学生突破惯性思维,不能过于片面、主观,应认真仔细省题。初中生对问题有思考,但思考的深度不够。通过这道题可以告诉学生:突破惯性思维,全面思考问题,不惧怕数学题,使他们愿意主动思考数学题。本题运用到分类讨论思想,这个思想在数学上的运用十分广泛。
五、结语
勾股定理是中学阶段最重要的定理之一,本文从中学生的心理特征,以及不同层次的学生的不同学习特点、心理特点出发,立足缩小学生间的层次差异、实现学生自我价值的观点,讨论勾股定理在实际教学中的不同证明方法的教法,和一些典型题型的解题思路,以及如何在教课过程中引导不同层次的学生学习,产生数学学习兴趣,构建数学知识体系。
参考文献:
[1]《周髀算经》[M].文物出版社1980年3月。据宋代嘉靖六年本影印。
[2]《九章算术》[M].重庆大学出版社。10月。
勾股定理是什么【第三篇】
1、发展历程
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前11)答周公曰“故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的'三边关系:以日下为勾,日高为股,勾、股各乘并开方除之得斜至日。
2、主要意义
1、勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
2、勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数“与有理数的差别,这就是所谓第一次数学危机。
3、勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
4、勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,另一方面也为不定方程的解题程序树立了一个范式。
勾股定理小论文【第四篇】
1、引言
勾股定理是初中数学中非常重要的一个定理[1]。它很好地解释了直角三角形中三条边之间的数量关系,对于几何学当中有关直角三角形的计算机证明问题,利用勾股定理往往能够迎刃而解,使学生快速掌握解决方法。同时,在日常生活及工作当中,勾股定理的应用也非常广泛。因此,在初中数学教学过程中,充分利用好勾股定理这一有效手段进行解题显得尤为重要。笔者结合多年的教学经验,利用勾股定理,对初中数学当中的“线段求长问题”、“求角问题”、“证明垂直问题”及“实际问题”进行了分析与探究,希望以此能够为初中数学教学提供有效依据。
2、勾股定理在线段问题中的应用
在初中数学中,一些“线段求长”问题使用常规方面解决常表现的较为棘手,而使用勾股定理往往能够得以有效解决。例题1:如图1,在三角形ABC中,已知:∠ABC=90°,AB=BC,三角形的三个顶点分别位于相互平行的三条直接l1、l2、l3上,并且l1与l2之间的距离为2,l2,与l3之间的距离为3,求AC的长度。解:过A作l3的垂线交l3于D,过C作l3的垂线交l3于E,由已知条件:∠ABC=90°,AB=BC,得:Rt△ABD与Rt△BEC全等;所以,AD=BE=3,DB=CE=5;进而得:AB2=BC2=32+52=9+25=34;在直角三角形ABC中,AC2=AB2+BC2=68,所以:AC=217姨
3、勾股定理在求角问题中的应用
在初中数学当中,有些求角问题使用常规方法难以解决,而使用勾股定理则能够很快地解决。因此,将在求角问题中充分应用勾股定理便有着实质性的作用[2]。例题2:如图2,在等边△ABC中,有一点P,已知PA、PB、PC分别等于3、4、5,试问∠APB等于多少度?解:把△APC绕着点A旋转,旋转至△ABQ,让AB和AC能够重合;此时,AP=AQ=3,BQ=PC=5,,∠PAQ=∠BAC=60°;所以,△PAQ是等边三角形;所以,PQ=3;在三角形PBQ当中,PB、BQ分别等于4、5,所以,三角形PBQ是直角三角形,其中∠BPQ=90°;所以,∠APB=∠BPQ+∠APQ=90°+60°=150°。
4、勾股定理在证明垂直问题中的应用
在初中数学当中,一些证明垂直的问题如果利用勾股定理进行求解,那么将能够达到事半功倍的效果。下面笔者结合有关证明垂直问题的题型展开讨论。例题3:如图3所示,已知AB=4,BC=12,CD=13,DA=3,AB⊥AD,证明:BC⊥BD[3]。证明:由已知条件AB⊥AD可知,在三角形ABD中,∠BAD=90°;因为AD、AB分别为3、4,由勾股定理可知:BD2=AB2+AD2=32+42,求得:BD=5,又因为BD2+BC2=52+122=132=CD2;因此,三角形DBC为直角三角形,其中∠CBD=90°;所以,BC⊥BD。
5、勾股定理在实际问题中的应用
对于勾股定理,还能够解决实际问题,并且这些实际问题都是在日常生活中可以看到的。例题4:一棵小树高为4米,现有小鸟A停留在树梢上,此时小鸟B停留在高20米的一棵大树树梢上发出友好的叫声,已知大树与小树的距离为12米,如果小鸟A以4m/s的速度飞往大树树梢,试问:小鸟A至少需要多长时间才能够与小鸟B在一起?解:如图4,根据题干的已知条件可知,AC=16m,BC=12m,由勾股定理得:AB2=AC2+BC2=162+122,求得AB=20m;所以,小鸟A所需时间为20/4=5秒。笔者认为,利用勾股定理解决实际问题,需要弄清题意,进而对题目中所涉及的直角三角形找出来,然后结合勾股定理进行求解[4]。在例题4中,最主要的步骤便是依照题意,结合勾股定理,然后画出大树与小树之间的直角三角形,在充分利用已知条件的基础上,便能够使问题有效解决。
6、结语
通过本课题的探究,认识到在初中数学中,对于许多问题可以利用勾股定理进行求解。包括“线段求长问题”、“求角问题”、“证明垂直问题”及“实际问题”等。笔者认为,勾股定理在几何学当中占有非常重要的地位,它不仅仅只是一种解决数学问题的定理那么简单,它还与我们的日常生活息息相关。在数学教学过程中,学习勾股定理进行解题,不但能够提高学生解题的效率,而且还能够让学生对生活引发思考,从而在学习数学过程中,体会到生活与数学学科的密切联系,进一步为数学在生活中的实际应用奠定良机。