勾股定理小论文 勾股定理小论文100【热选5篇】

网友 分享 时间:

【前言导读】这篇优秀范文“勾股定理小论文 勾股定理小论文100【热选5篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

勾股定理【第一篇】

教学目标:

1、知识目标:

(1)掌握;

(2)学会利用进行计算、证明与作图;

(3)了解有关的历史。

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关的历史讲解,对学生进行德育教育.

教学重点:及其应用

教学难点:通过有关的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来.

:直角三角形两直角边 的平方和等于斜边 的平方

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形。

方法二:将四个全等的直角三角形拼成如图2所示的正方形,

方法三:“总统”法。如图所示将两个直角三角形拼成直角梯形

以上证明方法都由学生先分组讨论获得,教师只做指导。最后总结说明

4、定理与逆定理的应用

例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长。

解:∵△ABC是直角三角形,AB=5,BC=3,由有

∴ ∠2=∠C

∴CD的长是

例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

求证:

证法一:过点A作AE⊥BC于E

则在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

证法二:过点D作DE⊥AB于E, DF⊥AC于F

则DE∥AC,DF∥AB

又∵AB=AC,∠BAC=

∴EB=ED,FD=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,

第 1 2 页

勾股定理小论文(精【第二篇】

在这一环节中,我设计了这样一个情境,多媒体动画展示,米老鼠来到了数学王国里的三角形城堡,要求只利用一根绳子,构造一个直角三角形,方可入城,这可难坏了米老鼠,你能帮它想办法吗?预测大多数同学会无从下手,这样引出课题。只有学习了勾股定理的逆定理后,大家都能帮助米老鼠进入城堡,我认为:“大疑而大进”这样做,充分调动学习内容,激发求知欲望,动漫演示,又有了很强的趣味性,做到课之初,趣已生,疑已质。

本环节要围绕以下几个活动展开:

1、算一算:求以线段a,b为直角边的直角三角形的斜边c长。

1a=3b=42a=5b=123a==64a=6b=8

2、猜一猜,以下列线段长为三边的三角形形状

13cm4cm5cm25cm12cm13cm

3、摆一摆利用方便筷来操作问题2,利用量角器来度量,验证问题2的发现。

4、用恰当的语言叙述你的结论

在算一算中学生复习了勾股定理,猜一猜和摆一摆中学生小组合作动手实践,在问题1的基础上做出合理的推测和猜想,这样分层递进找到了学生思维的最近发展区,面向不同层次的'每一名学生,每一名学生都有参与数学活动的机会,最后运用恰当的语言表述,得到了勾股定理的逆定理。在整个过程的活动中,教师给学生充分的时间和空间,教师以平等的身份参与小组活动中,倾听意见,帮助指导学生的实践活动。学生的摆一摆的过程利用实物投影仪展示,在活动中教师关注;

1)学生的参与意识与动手能力。

2)是否清楚三角形三边长度的平方关系是因,直角三角形是果。既先有数,后有形。

3)数形结合的思想方法及归纳能力。

八年级正是学生由实验几何向推理几何过渡的重要时期,多数学生难以由直观到抽象这一思维的飞跃,而勾股定理的逆定理的证明又不同于以往的几何图形的证明,需要构造直角三角形才能完成,而构造直角三角形就成为解决问题的关键,直接抛给学生证明,无疑会石沉大海,所以,我采用分层导进的方法,以求一石激起千层浪。

1.三边长度为3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系?你是怎样得到的?请简要说明理由?

2.△abc三边长a,b,c满足a2+b2=c2与a,b为直角三角形之间有何关系?试说明理由?

为了较好完成教师的诱导,教师要给学生独立思考的时间,要给学生在组内交流个别意见的时间,教师要深入小组指导与帮助,并利用实物投影仪展示小组成果,取得阶段性成果再探究问题2.这样由特殊到一般,凸显了构造直角三角形这一解决问题的关键,让他们在不断的探究过程中,亲自体验参与发现创造的愉悦,有效的突破了难点。

勾股定理【第三篇】

教学目标 :

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史。

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育.

教学重点:勾股定理及其应用

教学难点 :通过有关勾股定理的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程 :

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来.

勾股定理:直角三角形两直角边 的平方和等于斜边 的'平方

强调说明:

(1)勾DD最短的边、股DD较长的直角边、弦DD斜边

(2)学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形。

方法二:将四个全等的直角三角形拼成如图2所示的正方形,

方法三:“总统”法。如图所示将两个直角三角形拼成直角梯形

以上证明方法都由学生先分组讨论获得,教师只做指导。最后总结说明

4、定理与逆定理的应用

例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长。

解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

∴ ∠2=∠C

∴CD的长是

例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

求证:

证法一:过点A作AE⊥BC于E

则在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

证法二:过点D作DE⊥AB于E, DF⊥AC于F

则DE∥AC,DF∥AB

又∵AB=AC,∠BAC=

∴EB=ED,FD=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,

例3 设

求证:

证明:构造一个边长 的矩形ABCD,如图

在Rt△ABE中

在Rt△BCF中

在Rt△DEF中

在△BEF中,BE+EF>BF

例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

AD+AB+BC=3,AB+BC+CD=3

图3中,在Rt△DGF中

同理

∴图3中的路线长为

图4中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH= 及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF=

∵3>>

∴图4的连接线路最短,即图4的架设方案最省电线.

5、课堂小结:

(1)勾股定理的内容

(2)勾股定理的作用

已知直角三角形的两边求第三边

已知直角三角形的一边,求另两边的关系

6、布置作业 :

a、书面作业 P130#1、2、3

b、上交作业 P132#1、3

板书设计 :

探究活动

台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

(1)该城市是否会受到这交台风的影响?请说明理由

(2)若会受到台风影响,那么台风影响该城市持续时间有多少?

(3)该城市受到台风影响的最大风力为几级?

解:(1)由点A作AD⊥BC于D,

则AD就为城市A距台风中心的最短距离

在Rt△ABD中,∠B= ,AB=220

由题意知,当A点距台风(12-4)20=160(千米)时,将会受到台风影响.

故该城市会受到这次台风的影响.

(2)由题意知,当A点距台风中心不超过60千米时,

将会受到台风的影响,则AE=AF=160.当台风中心从E到F处时,

该城市都会受到这次台风的影响

有关勾股定理小论文(精【第四篇】

勾股定理是九年制义务教育教科书八年级下册第十七章的内容,是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

针对八年级学生的知识结构、心理特征及学生的实际情况,可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

(一)知识与技能

1、体验勾股定理的探索过程,会运用勾股定理解决简单的问题。

(二)过程与方法

1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。

(三)情感态度与价值观

1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。

重点:会用勾股定理求直角三角形的边长

难点:勾股定理的探索过程

多媒体课件

第一学时

教学活动

活动1

导入欣赏图片,了解历史

2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:学生观察图片,发表见解。

资源准备:教师演示多媒体课件

设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。

活动2讲授探索勾股定理

探究一:探索直角三角形三边的特殊关系:

(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;

直角三角形1

直角边一a=3

直角边二b=4

斜边c=?

猜想三边关系满足关系:

直角三角形2

直角边一a=5

直角边二b=?

斜边c=13

猜想三边关系满足关系:

(2)猜想:直角三角形的三边关系为

探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?

思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:

直角三角形等于

几何语言表述:

如图,在rtδabc中,c=90°,则:

若bc=a,ac=b,ab=c,则上面的定理可以表示为:

学生活动:在独立探究的基础上,学生分组交流。

资源准备:教师演示多媒体课件

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

活动3讲授证明勾股定理

是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的。

(1)以直角三角形abc的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?

(2)面积分别怎样表示?它们有什么关系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的对边

为a、b、c。求证:a2+b2=c2。

分析:

⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,

让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

4s△+s小正=s大正

2ab+(b-a)2=c2

化简可证

学生活动:学生在独立思考的基础上以小组为单位,动手拼接。

资源准备:教师演示多媒体课件

设计意图:通过拼图活动,调动学生思维的积极性,锻炼学生的动手实践能力,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过对定理的证明,让学生确信定理的正确性。

活动4练习简单应用勾股定理解题

1、求下图中字母所代表的正方形的面积

2、求出下列各图中x的值。

3、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?

4、如图,点c是以ab为直径的半圆上一点,∠acb=90°,ac=3,bc=4,则图中阴影部分的面积是多少?

学生活动:学生独立思考完成

设计意图:教师利用学生已有的知识创设问题情境,有针对性地引导学生进行练习,为学习勾股定理在实际生活中的应用做好铺垫。

活动5作业总结反思,布置作业

1、本节课你有哪些收获?

2、还有哪些疑问?

3、作业:略

学生活动:学生归纳、总结谈感受

设计意图:通过小结能为学生从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

活动6讲授板书设计

勾股定理

一、定理:如果直角三角形的两直角边长分别为a,b,

斜边为c,那么

二、证明:略

三、应用:

活动7作业教学反思

本节课涉及了大量的有关勾股定理的背景知识,学生可以感受到勾股定理所蕴含的浓郁的数学文化。教学中应聆听学生发言,尊重学生发展。积极引导学生深挖细究,体现过程方法。教学中应着力激发学生学习数学的兴趣,也要注重自主探索与合作交流,同时还要注意数学思想方法的渗透,为学生今后的发展拓展了空间。

勾股定理

课时设计课堂实录

勾股定理

1第一学时教学活动活动1导入欣赏图片,了解历史

2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.

(1)你见过这个图案吗?

(2)你听说过“勾股定理”吗?

学生活动:学生观察图片,发表见解。

资源准备:教师演示多媒体课件

设计意图:从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料。

活动2讲授探索勾股定理

探究一:探索直角三角形三边的特殊关系:

(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;

直角三角形1

直角边一a=3

直角边二b=4

斜边c=?

猜想三边关系满足关系:

直角三角形2

直角边一a=5

直角边二b=?

斜边c=13

猜想三边关系满足关系:

(2)猜想:直角三角形的三边关系为

探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?

思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。

勾股定理:

直角三角形等于

几何语言表述:

如图,在rtδabc中,c=90°,则:

若bc=a,ac=b,ab=c,则上面的定理可以表示为:

学生活动:在独立探究的基础上,学生分组交流。

资源准备:教师演示多媒体课件

设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。

活动3讲授证明勾股定理

是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的。

(1)以直角三角形abc的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?

(2)面积分别怎样表示?它们有什么关系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的对边

为a、b、c。求证:a2+b2=c2。

分析:

⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,

让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:

4s△+s小正=s大正

2ab+(b-a)2=c2

化简可证

学生活动:学生在独立思考的基础上以小组为单位,动手拼接。

资源准备:教师演示多媒体课件

设计意图:通过拼图活动,调动学生思维的积极性,锻炼学生的动手实践能力,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过对定理的证明,让学生确信定理的正确性。

活动4练习简单应用勾股定理解题

1、求下图中字母所代表的正方形的面积

2、求出下列各图中x的值。

3、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?

4、如图,点c是以ab为直径的半圆上一点,∠acb=90°,ac=3,bc=4,则图中阴影部分的面积是多少?

学生活动:学生独立思考完成

设计意图:教师利用学生已有的知识创设问题情境,有针对性地引导学生进行练习,为学习勾股定理在实际生活中的应用做好铺垫。

活动5作业总结反思,布置作业

1、本节课你有哪些收获?

2、还有哪些疑问?

3、作业:略

学生活动:学生归纳、总结谈感受

设计意图:通过小结能为学生从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。

活动6讲授板书设计

勾股定理

一、定理:如果直角三角形的两直角边长分别为a,b,斜边为c,那么

二、证明:略

三、应用:

活动7作业教学反思

本节课涉及了大量的有关勾股定理的背景知识,学生可以感受到勾股定理所蕴含的浓郁的数学文化。教学中应聆听学生发言,尊重学生发展。积极引导学生深挖细究,体现过程方法。教学中应着力激发学生学习数学的兴趣,也要注重自主探索与合作交流,同时还要注意数学思想方法的渗透,为学生今后的发展拓展了空间。

勾股定理小论文【第五篇】

自“科教兴国”战略实施多年以来,我国的教育体制已逐渐从应试教育向素质教育转变。然而,这种转变的有效性仍值得检验。素质教育的本质就是以培养、激发学生的创新思维为目的,以特色的教学模式为手段,调动学生的积极思维欲望,不拘一格地带动学生对知识敢想、多想,以达到学生更深层次地理解所学知识,使其真正转变为自己的知识,并能在以后的学习、生活中加以利用。就数学而言,数学课堂教学研究一直是国内外教育改革的焦点之一,课堂被认为是学生构建知识,老师组织学习最重要的现实环境,它被喻为“人世间最复杂的实验室之一”。作为一名初中数学教育工作者,如何能在课堂中带动学生的听课积极性,使学生对我们所教内容产生浓厚的兴趣,而不认为是教条式的填鸭,显得至关重要。勾股定理是中国几何的根源,是中华数学的精髓。在此,作者以初中二年级数学课程“勾股定理”作为课程实践案例,进行了一次简单尝试。

一、以历史故事开始,激发学生兴趣

笔者改变了以往“勾股定理”教学中照书念的本本模式,而是不惜用去10分钟时间给学生讲讲勾股定理的起源。在引领学生将书翻到勾股定理章节后,告诉学生,大家书本上看到的这位毕达哥拉斯,是公元前四百多年前发现了直角三角形的三边关系,而最早有关该定理的文字著作出自我国商朝约公元前200年左右的《周髀算经》,由商高发现。并在三国时代由赵爽对其做出详细注释,又给出了另外一个证明引,我们的祖先是不是也很智慧呢?此时,全班几乎所有学生目光都从书本移开,极为专注地看着笔者,眼神中带着强烈的求知欲望。笔者转而引导学生开始上课,每个孩子都带着浓厚的兴趣想要学好我们祖先发现的伟大定理。

二、数形结合,形象理解抽象概念

通过带领学生从看图中快速计算正方形ABC、A’B’C’面积,并展开猜想,引出“勾股定理”的命题。随后,将学生分组,一组4人,给每组分发下去4个全等的直角三角形纸板,短直角边标有a(勾)字样,长直角边和斜边分别标有b(股)及c(弦)。让每一位同学都在仔细观察“赵爽弦图”的同时,用纸板摆出“赵爽弦图”,使学生对赵爽的证明过程有一个初步形象的直观认识,然后给学生做出赵爽对“勾股定理”的详细推导。学生们在小组参与弦图旋转、摆放的过程中,个个乐此不疲,相互提醒。虽然,教室中看似多了点吵闹,但笔者发现,在学生眼、手、口并用的实际操作中,勾股定理的学习少了许多课本填鸭式的枯燥,换之而来的是学生们积极的参与、激烈的讨论和更为浓厚的`兴趣。

三、举一反三,调动思维

在定理证出后,笔者立即向学生提问:谁能给出快速说出更多的均以整数为边的勾股数的方法?底下同学开始议论,一位同学的回答引得全班哄堂大笑,上网!笔者也忍俊不禁,告诉他很会利用现代高科技工具,算是一项能力,但不是独立解决该问题的最佳办法。此时,已有学生说出6、8、10,9、12、15等等。笔者微笑点头肯定,整数勾股数三遍等量放大比例同样也是勾股数,三边不可约分的整数勾股数是以质数为最短边,并且只有一组以其为最短边的勾股数。至于原因,不过该内容已超纲,有兴趣的同学可以课下研究、探讨。

四、课后总结,课外拓展

重点内容“勾股定理”授课完毕,继而启发学生对“勾股定理”的实际应用。学生通过做门框、湖水等实际应用题对勾股定理的实用性有了更加现实的认识,也有了数学建模的简单概念。邻近下课时,给学生布置了家庭作业,让学生用一个礼拜的时间观察生活中有关勾股定理应用的现实例子,并加以简单介绍。之后腾出一节课给学生自由发挥,介绍自己对勾股定理的实践观察,学生们积极上台发言,表达欲望强烈,在其他同学获取知识的同时,讲述的同学也在大家肯定的掌声中增强了自信心,课外拓展取得了很好的效果。

五、结语

固定不变的是已有的知识,持续发展进步的是我们的思维。初中学生正处在一个思维活跃的阶段,在初中数学课堂基本理论的教学中,适时带入一些生动灵活的素材,如讲述所教内容的历史小故事,团体讨论、课外拓展等,培养起学生自动自发的学习意识,积极思考的求知欲望和举一反三的实践能力,会使我们的教学质量得到较大幅度的提高,培养出更多的勤思考、爱动脑和成绩好的优秀学子。

65 455623
");