《直线的一般式方程》教案重难点通用7篇
直线的一般式方程的重难点在于理解方程的结构与几何意义,以及如何通过系数识别直线的性质和位置,是否能够准确掌握?以下是网友为大家整理分享的“《直线的一般式方程》教案重难点”相关范文,供您参考学习!
《直线的一般式方程》教案重难点 篇1
【教学目标】
(一)知识与技能
1.掌握由已知直线上一点和斜率导出直线方程的方法。
2.掌握直线方程的点斜式、两点式、斜截式、截距式、一般式,并掌握它们各自的适用范围,能熟练地进行各种方程形式之间的互化。
3.能根据已知条件熟练求出各种形式的直线方程。
(二)过程与方法
1.通过建立各种形式的直线方程,进一步熟悉和巩固直线代数化的具体方法。
2.由“直线的点斜式方程”推导程序来类比学习其他形式直线方程建立方法,掌握类比的学习方法。
……
(三)情感、态度与价值观
通过本节内容的学习,进一步认识到同一个对象可用不同方法来研究的认识观;同时知道直线方程的五种形式是一个统一的相互转化思想……
【教学重点和难点】
教学重点:直线的点斜式方程、直线的一般方程。
教学难点:直线方程的应用。
【教学方法和手段】
教学方法:以问题引导的研究性学习。
教学手段:恰当使用多媒体展示学习内容。
【教学过程】
一、创设情境,导入新课
教师活动1:提出问题:(1)确定一条直线所需要的几何要素是什么?(2)一条直线与其斜率的对应关系是什么?
学生活动1:思考问题,回顾旧知,回答问题。
教师活动2:根据学生回答,用PPT呈现确定一条直线所需要的几何要素和一条直线与其斜率的对应关系。
1.确定一条直线所需要的几何要素
(1)已知两点P1(x1,y2),P2(x2,y2)可确定一条直线。
(2)已知P0(x0,y0)和倾斜角(斜率k)可确定一条直线。
2.一条直线与其斜率的对应关系
(1)对于任意一条直线l,它的倾斜角α唯一。
(2)当α=90°时,斜率k不存在,当α≠90°时,斜率k存在且唯一。
学生活动2:学生观看PPT,温顾旧知。
设计意图:通过老师提问,一是集中学生注意力;二是让学生回顾所学知识,为新知识的学习做准备。
二、提出问题,探索新知
教师活动3:提出新的思考问题:给定直线l经过P0(x0,y0),且斜率为k,如何求直线l的方程?
学生活动3:进入思考状态。
教师活动4:给予学生适当引导:设点P(x,y)是直线l上不同于点P0的任意一点,因为直线l的斜率为k,由斜率公式得:
学生活动4:学生思考并理解刚才的推导过程。
设计意图:通过问题驱动学生思考,并调动学生学习新知识的热情。
1.小组讨论,引导探究
教师活动5:同学们分小组讨论如下两个小问题:
(1)经过点P0(x0,y0),斜率为k的直线l上的点,其坐标都满足方程(1)吗?
(2)坐标满足方程(1)的点都在经过点P0(x0,y0),斜率为k的直线上吗?
学生活动6:小组讨论,并回顾方程(1)的推导过程,得出结论:上述的两个小问题都是对的。
教师活动6:让学生回答小组讨论的结果并总结:方程(1)就是直线方程的点斜式。
设计意图:通过小组讨论,让学生在与他人交流的过程中分享自己的收获并让学生感受到学习数学的快乐。
2.类比迁移,自主探究
教师活动7:继续分小组讨论,设计新的探究任务:若已知直线l的斜率为k,与y轴的交点为P(0,b),结合直线方程的点斜式,直线的l方程又如何?
学生活动7:学生分组讨论,动手实践,相互交流,尝试给出结果。
预计学生能给出直线l的方程:
y=kx+b (2)
教师活动8:用几何画板演示直线方程的斜截式的发现过程,并动态演示截距b的变化过程;而方程(2)仍成立,让学生体会直线方程的斜截式b的任意性。
学生活动8:学生观看演示,形成完整的认知。
设计意图:让学生类比直线方程的点斜式探索过程,以自主探究与团队协作相结合的形式探究新知,充分调动学生参与知识建构的积极性、主动性。
教师活动9:教师引导学生提炼发现过程,得出直线方程的斜截式。
学生活动9:学生领悟发现过程。
设计意图:让学生感悟由直线方程的点斜式到直线方程的斜截式的探索过程,并体会其中蕴涵的数学思想和方法,感受其中包含的数学之趣。
3.拓展延伸,升华能力
教师活动10:同学们想一想方程的斜截式:y=kx+b与我们学过的一次函数表达式之间有什么关系呢?
学生活动10:同学们思考。
预计有些学生会忽略一次函数中k不能为0。
设计意图:让学生在学习新知识的同时并回顾以前所学的知识,形成一个完整的知识系统。
教师活动11:同学们,我们已经学了直线方程的点斜式与斜截式。现在我们来完成以下知识清单来加强对知识点的掌握。
知识清单
学生活动11:填表,巩固所学知识。
设计意图:通过填写表格,整体理解直线方程点斜式与斜截式的结构特征,领悟本节课的实质――将平面上点、线的几何关系转化为其代数关系(直线的方程)。
三、例题讲解,学以致用
教师活动12:用PPT呈现例题,要求学生独立求解。
例1:直线l经过点P0(2,3),且倾斜角为α=45°,求直线l的点斜式方程。
设计意图:通过学生练习,及时提供反馈,让学生感受合理选择和应用公式的意义。
例2:已知直线l1:y=k1x+b1,l2:y=k2x+b2,试讨论:(1)l1∥l2的条件是什么?(2)l1l2的条件是什么?
学生活动12:学生在独立思考的基础上解决问题。
设计意图:让学生回忆前面用斜率判断两直线平行、垂直的结论,加深对直线斜率与倾斜角的理解。
四、学生总结,老师提炼
教师活动13:同学们,回忆本节课的教学,鼓励学生进行总结。
学生活动13:学生尝试给出总结。
本环节侧重三点:(1)斜率式是点斜式的一种特殊形式;(3)说明本节课蕴涵着数形结合、分类讨论等数学思想方法;(3)鼓励学生反思,大胆质疑。
设计意图:让学生巩固本节课所学知识,回顾探索历程,体悟其中的数学思想与方法;认识到本节课的实质是将平面上的点、线的几何关系转化为其代数关系(直线的方程),再结合已经学过的直线倾斜角和斜率等知识,推导出直线的方程。
五、布置作业,拓展延伸
1.常规作业:P65页练习1
2.拓展作业
当α为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?
设计意图:这是一道开放性题目,有助于培养学生的发散思维,巩固新知识。
(选做题)在本节课的学习基础上,预习直线方程的两点式和一般式。
设计意图:这是为学有余力的学生安排的,将课堂的数学探究活动延伸到课外。作业的分层布置,体现分层教学,使不同层次的学生都有所收获。
《直线的一般式方程》教案重难点 篇2
【课程分析】
“认识方程”是小学阶段学习方程的起始课,大部分版本的教材都将其安排在五年级,且给出了“含有未知数的等式是方程”这一定义。日常教学中比较普遍的现象是,教师集中比较多的时间和精力去围绕这句话展开,着重引导学生从是否为等式,是否含有未知数这两个限制性条件来判断一个式子是不是方程以及理解方程和等式的关系。应该说,“含有未知数的等式是方程”这句话指出了方程的形式特征,但在形式的背后还隐藏着更为重要的思想意义。学习方程的价值在于会用方程解决问题,逐步学会运用代数的方法思考问题,即培养学生代数思维的能力,这一切离不开方程思想的渗透。
【学生分析】
五年级学生学习方程、领悟方程思想还是有一定难度的。一是方程思想本身具有抽象性,二是前面四年的数学学习中,学生已经习惯了用算术思维解决问题。
【教学目标】
1、在具体的情境中理解并掌握方程的意义,初步感受议程和等式的关系。
2、经历观察、语言描述、符号表达、分类、归纳的过程,发展抽象思维能力。
3、在具体情境中,感受数学与生活的密切联系,体会方程的作用即刻面现实情境中的等量关系,建立方程模型。
【教学重点】
在具体情境中理解方程的意义。
【教学难点】
用方程表示简单的等量关系,体会方程的意义和作用。
【教学过程】
一、激活经验,初步感知
师:时间过得好快,一转眼我们都上五年级了。你觉得咱们五年级的学习水平跟一年级相比――
生:水平高多了。
师:好啊,那就请大家来做小老师。最近,一年级的孩子遇到了这样一个问题:草地上有7人在踢足球,再来几人,就是10人?
师:有个叫小明的同学是这样做的。(板书7+3=10)对于这种做法,你有什么想说的?
生:我认为这种做法是错误的。7+3=10,这里的3不知道从哪里来的。应该用10-7=3(板书10-7=3)
师:你们的意思是,7和10是告诉我们的数,就叫做已知数,而3不是题目中告诉我们的,属于――――
生:未知数。
师:你们是用已知数求出未知数。
师:(再次出示7+3=10,在7和10下面打√,3下面打?)现在,你能看出小明是怎么想的吗?
生:他是想,原来有7人,再来几人就是10人,也就是7加几等于10呢?
师:小明先想7+=10,然后想到了3,用一个符号来表示不知道的人数。这样的想法有没有道理呢?
生:有!
师:对啊,先不去想结果是多少,而是看看数量之间有怎样的关系。关系理清楚了,再去想结果。
师:孩子们,这种解决问题的方法蕴含了一个伟大的数学思想―――方程思想。那什么是方程思想呢?能说说你的感觉吗?
生1:就是用一个符号表示未知数。
生2:就是先想关系,在解决问题。
师:大家可能一时还说不太明白,没关系,让我们带着这种感觉继续学习。
师:你还能用其它的式子来表示小明的想法吗?
《认识方程》教学设计生:7+?=10,7+x=10,7+=10……
师:总之,你们想到的办法就是用一个符号来代表未知数,你们想的办法和数学家韦达想的办法是一样的,他是第一个想到用符号代表未知的量来进行系统计算的。不过,有另外一个数学家叫笛卡尔,他说,你用这个符号,我用那个符号,多乱啊!不如大家统一用几个固定的字母表示吧,其中x就是他选的字母之一,。我们也选用x表示吧。板书:7+3=10改为7+x=10
二、对比交流,构建意义
师:二年级时同学们又遇到了新问题:草地上一年级和二年级的同学们在踢球,二年级有6人,二年级同学的人数是一年级的3倍,一年级有几人?
生:6÷3=2
师:你知道小明同学的想法吗?
生:x×3=6或3x=6
师:小明怎么想到的?
生:二年级的人数=一年级的人数×3
师:****是未知数,***是已知数,看来,未知数和已知数一样,可以写到左边也可以写到右边,两者的地位是同样的。这是这道题中最简单的等量关系式。
师:一年级人数的3倍和二年级人数相等,这就是它们之间的等量关系。等量关系明确了,式子就能很轻松地写出来了。
师:转眼小明同学已经三年级了,又遇到了新问题:草地上原来有一些人在踢球,先来了3人,又走了2人后,现在草地上有8人。原来草地上有多少人?
师:你猜一猜同学们的方法,再猜一猜小明的方法,试着写在练习本上。
生1板书:8+2-3=7
生2板书:x+3―2=8
师:看看这两种方法,说说你们的想法?
生:8+2-3=7,是倒过来推想,x+3―2=8是顺着想。
师:说一说想的过程?
生:8+2-3=7是现在的人数+又走的人数―先来的人数=原来的人数
生:x+3―2=8是原来的人数+先来的人数―又走的人数=现在的人数
师:倒着想和顺着想,你觉得哪种关系更简单,更容易理解,为什么?
生:按照事情发生的顺序,顺着想更容易理解。
师:同学们,现在对方程思想理解的清楚些了吗?我们们继续学下去,相信大家的感受会更深些。
师:四年级了,同学们学习的问题更复杂了。出示:某风景区儿童票价的2倍多5元刚好是成人票价145元再加10元,儿童票的价格是多少元?你可以任选一种方法写在练习本上。
生1板书:(145+10-5)÷2(如果学生写不对,教师集体纠正)
生2板书:2x+5=145+10
师:说说你们的想法?
生1:145+10再减5才正好是儿童票价的2倍,所以再除以2才是儿童票价。
生2:儿童票价×2+5=145+10
师:哪种关系更简单?
生:第二种。
师:看来,选对方法,找准等量关系可以事半功倍啊。
师:通过解决这几个问题,观察一下两种方法,你有什么发现?同桌互相说一说。
师:谁先来说说,有什么不同的地方?
生1:左边的都是算式。
生2:右边的方法都含有未知数。(师板书)
生3:右边的式子都含有未知数,用一个字母代表未知数,顺着想,把题目的意思表达出来,就可以直接写成了一道算式。
生4:而左边的式子里未知数在等号的后面,需要倒着想才能把式子列出来得到未知数。
师:我们找到了它们的不同点,它们有一样的地方吗?
生:都有等号。
师:等号的左边和等号的右边都是怎样的?
生:相等的。
师:像这样的算式,我们叫等式。(板书:等式)
师:这些式子都是等式。
师:像左边的这些等式我们从一年级到四年级一直在用,非常熟悉。而右边的这些等式有什么特别的地方?
生:都含有未知数。
师:我们今天认识的这样的含有未知数的等式就叫做方程。(板书)
师:这就是今天我们要学习的新知识(板书:认识方程)。你现在觉得方程思想是什么?
生:方程思想就是先找出等量关系,用字母表示未知数,列出含有未知数的等式。
师:说的真好!方程就是抓住最简单的等量关系,列出含有未知数的等式。
师:还没学习方程的时候,同学们就列出了这么多的方程。其实方程在很早的时候就有了。
1、早在三千六百多年前,埃及人就会用方程解决问题了。
2、在我国古代,大约两千前成书的《九章算术》中,就记载了用一组方程解决问题的史料。
3、四百多年前法国数学家韦达在他的《分析法入门》著作中,系统使用了符号表示未知量的值进行运算。
4、一直到三百年前,法国的数学家笛卡尔第一个提倡用排在字母表后面的x,y,z代表未知数,这种用法成为当今的标准用法,形成了现在的方程。
三、借助天平,强化建构
师:(出示天平)这是什么?
生:天平。
师:和我们玩什么很像?
生:跷跷板。
师:如果天平两边这样摆法码?天平会是什么样子?做个手势告诉我。
师:两边一样高还是一边高一边低?为什么?
生:因为两边一样重。
师:如果这样摆法码呢?还会一样高吗?
生:不会,不一样重。
师:这样呢?
生做手势。
师:现在这个天平是什么样子?
生:一样了。
师:当天平两边一样的时候,它和方程等号两边相等的性质是一样的。所以,人们常常借助这样的天平学习和理解方程。
师:你会根据这个天平写出一道方程吗?(x4511050)
生:x+45=110+50
师:还有其它列法吗?
师:110+50=x+45,也是可以的,只有我们习惯将含有未知数的式子放在等号的左边。
师:我这里有四个天平,根据四个天平写出了四个式子,这四个式子里面有没有方程?
师:你如果认为有一个,可以举一个手,认为有两个可以举两只手,认为有三个可以和同桌合作。
师:第几个是方程?
生:第三个是方程。
师:第4个为什么不是?那1和2都有未知数呀,怎么就不是方程?
生:必须是等号连接。
生:还需要有未知数。
师:不错,不仅有未知数,而且是等式。我们列方程是为了把未知数求出来,1和2能求出准确的数吗?
生:不能。
师:像1和2这样的式子,虽然也含有未知数,但是只能求出大概范围。所以它们属于另一类,而不属于方程。
师:你们真棒,你们已经可以根据天平写方程了,还会根据天平判断方程,那你们能根据方程画天平吗?
师示范。
生陆续画出。(投影展示)
师:同学们们都很棒,都会根据方程画出天平,其中最值得表扬的是你们画的天平都很平,表示左右两边是相等的、平衡的,高难度的是这一道:
你能根据它,列出方程吗?同桌互相说一说。
这不是最难的,最难的在这:你能不能根据这个天平,从天平上去掉一点东西列出一个新的方程,你想怎么做?
生:左边和右边把梨和草莓都去掉。
师:光去掉一边行吗?
生:不行,那就不相等了。
师:那就不是方程了。(师操作)
师继续追问,一点点的去,最后剩下:x=200
师:你现在知道苹果有多重了吗?
生:200克。
四、师总结(画集合),生谈收获。
师:同学们刚才还想到了还想到往上面加东西,对吗?时间关系,怎样加课后和我交流。同学们今天学习了方程,你有什么收获?
生交流后。
师:小明列出了那么方程怎么来解这些方程呀?其实解方程的秘密就藏在天平里。这节课就上到这儿,下课。
《直线的一般式方程》教案重难点 篇3
1教学目标
1、掌握直线的一般式方程以及它的形式特征,还有直线方程的各种形式间的相互转化。
2、通过探究直线与一元二次方程的关系,让学生认识到数学的以旧推新,通过观察、分析、归纳得到直线的一般式方程。
3、通过课堂参与,激发学生的数学学习的兴趣,认识到事物之间的普遍关系。
2学情分析
我班学生的数学基础较差,只有几个学生可以做到完成老师布置的任务,还有一部分同学被动的学习,一部分是根本不学习数学,本节课对学生的分析能力和分类讨论能力有一定要求,特别是用分类讨论思想来解决问题的能力,学生学习起来有一定难度,所以需要老师逐渐的引导。
3重点难点
根据教学目标的确定,并结合学生的认知水平,我确定本节课的重点和难点如下:
重点:直线的一般式方程以及各种形式间的相互转化.
难点:对直线的一般式方程的理解和应用。
4教学过程 第一学时 教学活动 活动1【导入】1重点回顾
问题:(1)平面内的直线,它们的直线方程有几种表示形式?
(2)从上述几种形式的直线方程中,你能否找到它们的共同特点呢?
—–教师让学生回顾,观察,发表自己的见解。学生能够积极主动地投入到课堂中,充分调动他们思维的活跃性。
活动2【活动】2.深入思考
问题2:平面直角坐标系中的每一条直线都可以用一个关于x,y 的二元一次方程表示吗?
—-教师让学生思考,接着观察,思考、讨论、交流。然后教师巡视课堂辅导个别学生,从而引导学生分类讨论。培养学生动手、动脑、归纳概括的能力以及分类讨论的思想。
问题3:每一个关于x,y的二元一次方程都表示一条直线吗?
—教师给出任意一个二元一次方程,学生动手把它转化成直线方程的某一种形式。对学生得出的结论,教师加于引导。在这一过程中又一次体现了分类讨论的思想。
活动3【活动】3. 探究发现
–教师给出任意一个二元一次方程,学生动手把它转化成直线方程的某一种形式。对学生得出的结论,教师加于引导。在这一过程中又一次体现了分类讨论的思想。
最后总结归纳出直线的一般式方程:
关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫做直线的一般式方程。
通过对问题2与问题3的探究,让每一位学生都能积极主动参与到教学活动中,并且敢于发表自己的见解,调动了学生学习的兴趣,使学生的主体地位得到充分的体现,也使得本节课的重点和难点得以突破。
活动4【讲授】4.讨论交流
在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线
(1)平行于X轴:(2)平行于Y轴:(3)与X轴重合:(4)与Y轴重合:—-
教师让学生分组展开讨论,发挥学生学习的主动性,培养他们合作交流的能力。
活动5【讲授】5、知识应用
1、已知直线经过点A(-3,5),斜率为,求直线的点斜式和一般式方程. —-
学生独立思考解决,教师展示学生的解题结果并点评。学生体会把直线的点斜式方程转化为一般式,把握直线的一般式方程特点。
2、把直线的一般式方程化成斜截式,求出直线的斜率以及它在x轴与y轴上的截距,并画出图形。
—-
学生在黑板上板演,教师巡视指导。学生体会直线的一般式方程转化为斜截式,并且掌握又直线的一般式方程求直线的斜率和截距的方法。
活动6【练习】6、课堂巩固练习
教科书第99页,练习第1题教科书第100页,练习第2题的第(1)小题——强化本节课所学的知识
活动7【测试】(六)课堂小结
引导学生从以下几点小结:(1)直线方程的五种形式及其特点.
(2)直线的一般式方程的形式特征。
(3)本节课学习了哪些数学思想方法
—-使学生对本节课有一个系统的认识,同时养成良好的学习习惯。
活动8【作业】8布置作业
教科书第101页,习题组第10题和第11题。
—–通过作业,反馈教学效果,提高有效教学
直线的一般式方程
课时设计 课堂实录
直线的一般式方程
1第一学时 教学活动 活动1【导入】1重点回顾
问题:(1)平面内的直线,它们的直线方程有几种表示形式?
(2)从上述几种形式的直线方程中,你能否找到它们的共同特点呢?
—–教师让学生回顾,观察,发表自己的见解。学生能够积极主动地投入到课堂中,充分调动他们思维的活跃性。
活动2【活动】2.深入思考
问题2:平面直角坐标系中的每一条直线都可以用一个关于x,y 的二元一次方程表示吗?
—-教师让学生思考,接着观察,思考、讨论、交流。然后教师巡视课堂辅导个别学生,从而引导学生分类讨论。培养学生动手、动脑、归纳概括的能力以及分类讨论的思想。
问题3:每一个关于x,y的二元一次方程都表示一条直线吗?
—教师给出任意一个二元一次方程,学生动手把它转化成直线方程的某一种形式。对学生得出的结论,教师加于引导。在这一过程中又一次体现了分类讨论的思想。
活动3【活动】3. 探究发现
–教师给出任意一个二元一次方程,学生动手把它转化成直线方程的某一种形式。对学生得出的结论,教师加于引导。在这一过程中又一次体现了分类讨论的思想。
最后总结归纳出直线的一般式方程:
关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫做直线的一般式方程。
通过对问题2与问题3的探究,让每一位学生都能积极主动参与到教学活动中,并且敢于发表自己的见解,调动了学生学习的兴趣,使学生的主体地位得到充分的体现,也使得本节课的重点和难点得以突破。
活动4【讲授】4.讨论交流
在方程Ax+By+C=0中,A,B,C为何值时,方程表示的直线
(1)平行于X轴:(2)平行于Y轴:(3)与X轴重合:(4)与Y轴重合:—-
教师让学生分组展开讨论,发挥学生学习的主动性,培养他们合作交流的能力。
活动5【讲授】5、知识应用
1、已知直线经过点A(-3,5),斜率为,求直线的点斜式和一般式方程. —-
学生独立思考解决,教师展示学生的解题结果并点评。学生体会把直线的点斜式方程转化为一般式,把握直线的一般式方程特点。
2、把直线的一般式方程化成斜截式,求出直线的斜率以及它在x轴与y轴上的截距,并画出图形。
—-
学生在黑板上板演,教师巡视指导。学生体会直线的一般式方程转化为斜截式,并且掌握又直线的一般式方程求直线的斜率和截距的方法。
活动6【练习】6、课堂巩固练习
教科书第99页,练习第1题教科书第100页,练习第2题的第(1)小题——强化本节课所学的知识
活动7【测试】(六)课堂小结
引导学生从以下几点小结:(1)直线方程的五种形式及其特点.
(2)直线的一般式方程的形式特征。
(3)本节课学习了哪些数学思想方法
—-使学生对本节课有一个系统的认识,同时养成良好的学习习惯。
活动8【作业】8布置作业
教科书第101页,习题组第10题和第11题。
—–通过作业,反馈教学效果,提高有效教学
《直线的一般式方程》教案重难点 篇4
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的`特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.
教学设计示例
直线方程的一般形式
教学目标:
(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.
(2)理解直线与二元一次方程的关系及其证明
(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.
教学重点、难点:直线方程的一般式.直线与二元一次方程 ( 不同时为0)的对应关系及其证明.
教学用具:计算机
教学方法:启发引导法,讨论法
教学过程():
下面给出教学实施过程设计的简要思路:
教学设计思路:
(一)引入的设计
前边学习了如何根据所给条件求出直线方程的方法,看下面问题:
问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答,并纠正学生中不规范的表述.再看一个问题:
问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?
答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.
肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.
启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.
学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:
【问题1】“任意直线的方程都是二元一次方程吗?”
(二)本节主体内容教学的设计
这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.
学生或独立研究,或合作研究,教师巡视指导.
经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:
思路一:…
思路二:…
……
教师组织评价,确定最优方案(其它待课下研究)如下:
按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.
当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.
当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?
学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:
平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.
综合两种情况,我们得出如下结论:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.
至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”.
同学们注意:这样表达起来是不是很嗦,能不能有一个更好的表达?
学生们不难得出:二者可以概括为统一的形式.
这样上边的结论可以表述如下:
在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.
启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?
【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?
不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?
师生共同讨论,评价不同思路,达成共识:
回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中 、 不同时为0)系数 是否为0恰好对应斜率 是否存在,即
(1)当 时,方程可化为
这是表示斜率为 、在 轴上的截距为 的直线.
(2)当 时,由于 、 不同时为0,必有 ,方程可化为
这表示一条与 轴垂直的直线.
因此,得到结论:
在平面直角坐标系中,任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线.
为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.
【动画演示】
演示“直线各参数.gsp”文件,体会任何二元一次方程都表示一条直线.
至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.
(三)练习巩固、总结提高、板书和作业等环节的设计在此从略
《直线的一般式方程》教案重难点 篇5
教学内容
教科书第96~98页的内容,完成练习二十四的第1~5题.
教学目的
使学生初步认识方程的意义,知道方程的解和解方程的区别以及解简易方程的一般步骤.
教具准备
简易天平、砝码、标有“20”、“30”和“?”的方木块,画有教科书第12页上图的挂图,小黑板或投影片.
教学过程
一、新课
1.方程的意义.
(1)教学第1个例子.
教师将简易天平、砝码摆在讲台上,然后,提出问题指名让学生回答.
教师:讲台上摆着的是什么仪器?(天平.)
它是用来做什么的’?(用来称物品的重量的.)
怎样用它来称物品的重量呢?(在天平的左面盘内放置所称的物品,右面盘内放置砝码.当天平的指针在标尺中间时,表示天平平衡,即天平两端的重量相等.砝码上所标的重量就是所称物品的重量.)
教师一边提问,一边根据学生的回答演示如何用天平称物品.(称出的物品同教科书第11页上图.)
教师:那么,使天平平衡的条件是什么呢?(天平左、右两边的重量相等.)
教师:对!天平两边放上重量相等的物品时,天平就平衡,反过来说,天平保持着平衡,就说明天平两边所放的物品重量相等.那么,我们能不能用式子来表示出这种平衡的情况呢?试试看!
先让学生自由地说一说,根据学生的发言,教师写出算式:20+30=50
教师:20+30=50是一个什么式子?(等式.)对!这是一个等式.
(2)教学第2个例子.
教师改变天平上所放的物品和砝码,使之同教科书第11页下图.
教师:现在天平也保持着平衡,这说明了什么?(说明天平左、右两边的重量相等.)那么,怎么用式子来表示这种平衡的情况呢?再试试看!
指名让学生试着写等式,如果学生写出20+?=100,可以提示学生:“?”是不是要求的未知数?我们以前学习过,一般用什么字母表示未知数?
教师和学生共同把等式20+?=100改写成20+x=100.
教师:20+x=100是一个什么式子?
学生:这也是一个等式.
教师:对!这也是一个等式.但是,这一个等式与20+30=50有什么不同?
学生:这是一个含有未知数的等式.
教师:左盘中的这个标有“?”的方木块应该是多少克,才能使天平保持平衡呢?也就是这个等式中的x是多少才能使等号左右两边正好相等呢?可以是一个随便的重量吗?
让学生自由地说一说,教师总结.
教师:对!这里的x所表示的未知重量不是随便确定的,它必须是使天平保持平衡的重量,也就是说未知数所代表的数值必须使等号左右两边正好相等.同学们观察一下天平,想一想x应该代表什么数呢?
让同桌的学生讨论一下,然后指名说一说.启发学生说出,因为左盘中未知的方木块重80克才能使天平平衡,所以只有x等于80的时候,才能使等式中的等号左右两边正好相等.
教师在20+x=100的右边板书:x=80
(3)教学第3个例子.
教师出示挂图(教科书第12页上图.)
教师:我们再来看这个例子.大家先认真观察,想一想,这幅图的图意是什么.同桌的两个同学说一说.
指名让学生说图意.
学生:这幅图告诉我们:这里的每个篮球的价钱是x元,3个篮球的总价是186元.
教师:每个篮球的价钱是x元,3个篮球的总价还可以怎样表示?
学生:每个篮球的价钱是x元,3个篮球的总价还可以表示为3x元.
教师:谁能根据图意写出一个等式来?
学生:3x=186
教师:想一想,这个等式有什么特点?
学生:这也是一个含有未知数的等式.
教师:当x等于多少时,这个等式中的等号左右两边正好相等?
《直线的一般式方程》教案重难点 篇6
一、讲授新课:
1.教学直线方程的一般形式:
①讨论:是否所有直线都可写成=x+b的形式?α=90°时直线方程是怎样的’?两种形式与Ax+B+C=0有何联系?
结论:直线的方程都是二元一次方程。
②讨论:Ax+B+C=0能否都化成=x+b的形式?B=0时表示什么图形?
结论:二元一次方程都表示一条直线。
③定义直线一般式方程:Ax+B+C=0 (A、B不全为0)
2.教学例题:
①已知直线L过点A(-6,4),斜率为 ,求直线的点斜式、一般式、截距式方程。
②学生讲各步解答,教师板演→小结:…
③练习:求直线x-2+6=0的斜率和在坐标轴上的截距。
二、巩固练习: (可只分析思路)
1.二次方程x -x-6 +3x+11-4=0表示两条直线,则两条直线方程分别是 。
解法:分解因式→每个因式为零即直线一般式方程。
2.直线ax-+2=0与直线3x--b=0关于直线=x对称,则a= ,b= 。
解法:利用反函数的图像性质。
3.已知a+2b=1,则直线ax+b+3=0一定经过定点的坐标是 。
4.直线L :4x++6=0。L :3x-5-6=0,L截L 、L 两直线所得线段的中点恰好是坐标原点,求直线L的方程。
5.课堂作业:书P44 1题, 7题。
以上是《直线的一般式方程》教案重难点的相关内容,希望对你有所帮助。另外,今天的内容就分享到这里了,想要了解更多的朋友可以多多关注本站。
《直线的一般式方程》教案重难点 篇7
一、教学目标
【知识与技能】
进一步掌握直线方程的各种形式,会根据条件求直线的方程。
【过程与方法】
在分析问题、动手解题的过程中,提升逻辑思维、计算能力以及分析问题、解决问题的能力。
【情感、态度与价值观】
在学习活动中获得成功的体验,增强学习数学的兴趣与信心。
二、教学重难点
【重点】根据条件求直线的方程。
【难点】根据条件求直线的方程。
三、教学过程
(一)课堂导入
直接点明最近学习了直线方程的多种形式,这节课将练习求直线的方程。
(二)回顾旧知
带领学生复习回顾直线斜率的求法,以及直线方程的点斜式、两点式和一般式。
为了加深学生的运用和理解,继续引导学生思考,是否有其他解题思路。预设大部分学生能够想到用点斜式进行计算。教师肯定学生想法并组织学生动手计算,之后请学生上黑板板演。
预设学生有多种解题方法,如AB、AC所在直线方程用两点式求解,BC所在直线方程用点斜式求解。
学生板演后教师讲解,点明不足,提示学生,计算结束后要记得将所求得方程整理为直线方程的一般式。
师生总结解题思路:求直线所在方程时,若给出两点坐标,在符合条件的情况下,可直接套用公式,也可利用点斜式进行求解,注意一题多解的情况。
(四)小结作业
小结:学生畅谈收获。
作业:完成课后相应练习题,根据已知条件求直线的方程。
四、板书设计
下一篇:返回列表