三角函数的定义及应用教学教案精彩5篇
【导言】此例“三角函数的定义及应用教学教案精彩5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
角函数教学设计【第一篇】
教材分析
本节是北师大版高中必修四第三章和两角和与差的正弦、余弦函数(书第116页-118页内容),本节是在学生已经学习了任意角的三角函数和平面向量知识的基础上进一步研究两角和与差的三角函数与单角的三角函数关系,它既是三角函数和平面向量知识的延伸,又是后继内容两角和与差的正切公式、二倍角公式、半角公式的知识基础,起着承上启下的作用,对于三角函数式的化简、求值和三角恒等式的证明等有着重要的支撑。本课时主要讲授运用平面向量的数量积推导两角差的余弦公式以及两角和与差的正、余弦公式的运用。
学情分析
学生在本节之前已经学习了三角函数和平面向量这两章知识内容,这为本节课的学习作了很多的知识铺垫,学生也有了一定的数学推理能力和运算能力。本节教学内容需要学生已经具有单位圆中的任意角的三角概念和平面向量的数量积的`表示等方面的知识储备,这将有利于进一步促进学生思维能力的发展和数学思想的形成。
课程资源
高中数学北师大版必修四教材;多媒体投影仪
教学目标
1、掌握用向量方法推导两角差的余弦公式,通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础;
2、让学生经历两角差的余弦公式的探索、发现过程,培养学生的动手实践、探索、研究能力。
3、激发学生学习数学的兴趣和积极性,实事求是的科学学习态度和勇于创新的精神。
教学重点和难点
教学重点:两角和与差的余弦公式的推导及运用
教学难点:向量法推导两角差的余弦公式及公式的灵活运用
(设计依据:平面内两向量的数量积的两种形式的应用是本节课“两角和与差的余弦公式推导”的主要依据,在后继知识中也有广泛的应用,所以是本节的一个重点。又由于“两角和与差的余弦公式的推导和应用”对后几节内容能否掌握具有决定意义,在三角变换、三角恒等式的证明、三角函数式的化简求值等方面有着广泛的应用,因此也是本节的一个重点。由于其推导方法的特殊性和推导过程的复杂性,所以也是一个难点。)
教学方法
情景教学法;问题教学法;直观教学法;启发发现法。
学法指导、
1、注意任意角的终边与单位圆交点坐标、平面向量的坐标的表示以及平面向量的数量积的两种表示形式的复习为两角差的余弦的推导做必要的准备,并让学生体会感悟向量在解决数学问题中的工具作用(体现学习过程中循序渐进,温故知新的认知规律。);
2、突出诱导公式在三角函数名称变换中的作用以及变角思想让学生进一步体会数学的化归思想。
3、让学生注意观察、对比两角和与差的余弦公式中正弦、余弦的顺序;角的顺序关系,培养学生的观察能力,并通过观察掌握公式的特点。
教学过程
教学流程为:创设情境----提出问题----探索尝试----启发引导----解决问题。
(一)创设情境,揭示课题
问题1:同学们都知道,,试问是否与相等?大家可以猜想是不是等于呢?下面我们就一起探讨两角差的余弦公式
设计意图
通过问题情境,自然流畅地提出问题,揭示课题,引发学生思考。使学生目标明确、迅速进入新知学习。
(二)问题探究,新知构建
问题2:你能用与的三角函数值表示出这两个角的终边与单位圆的交点A和B的坐标吗?怎样表示?
师生活动
画单位圆在直角坐标系中画出单位圆并作出与角的终边与单位圆的交点,引导学生利用三角函数值表示出交点坐标。
设计意图
通过复习使学生熟悉基础知识、特别是用角的正、余弦表示特殊点的坐标,为新课的推进做准备。
问题3:如何计算向量的数量积?
师生活动
引导学生观察是的夹角,引发学生对向量的思考,并及时启发学生复习向量的数量积的的两种表示。
设计意图
平复习面内两向量的数量积的几何法与代数法两种表示,从而使“两角差的余弦公式”的推证水到渠成。
问题4:计算cos15°和cos75°的值。
分析:本题关键是将分成45°与30°的和或者分解成45°与15°的差,再利用两角差的余弦公式即可求解。(学生板演)
师生活动
引导学生初步应用公式
设计意图
让学生熟练两角和与差的余弦公式,体会学生公式的实际应用价值,即:将非特殊角转化为特殊角的和与差。并引发学生对两角和的余弦公式的推证兴趣。
问题7:同学们都知道诱导公式cos(-β)=cosβ,sin(-β)=-sinβ,那么你会推导出cos(α+β)=?
师生活动
学生在老师的引导下自主推证两角和的余弦公式。
设计意图
让学生在学习中体会感受化归思想和类比思想在新知识发现中的作用。
问题8:同学们已学过sinα=cos(-α),那么你会运用这个公式推证出sin(α-β)和sin(α+β)吗?
师生活动
教师引导学生推导公式。
设计意图
新知构建并体会转化思想的应用。
问题9:勾画书中两角和与差的三角函数公式并观察它们有什么特点?
两角和与差的余弦:
同名之积相加减,运算符号左右反
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
两角和与差的正弦:
异名之积相加减,运算符号两相同
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
师生活动
学生总结公式特点,学习小组交流,教师总结公式结构特征。
设计意图
让学生熟悉并掌握公式特征,如:教的顺序、函数的顺序、符号的规律。
(三)知识应用,熟悉公式
例2、(1)求sin(-25π\12)的值;
(2)求cos75°cos105°+sin75°sin105°的值.
设计意图进一步熟悉诱导公式、两角和与差的三角函数公式的特点及正逆应用。
例3、已知求sin(α+β),cos(α-β)的值。
思维点拨:观察公式本题已知条件应先计算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函数的平方关系,并注意α,β的取值范围来求解.
设计意图
训练学生思维的有序性,例如在面对问题时,要注意先认真分析条件,明确使用公式时要有什么准备,准备工作怎么进行等。还要重视思维过程的表述,不能只看最后结果而不顾过程表述的准确性、简洁性等。在教学过程中,对例3适当延伸,目的要求学生正确使用分类讨论的思想方法,在表述上也对学生有了更高的要求。
(四)自主探究,深化理解,拓展思维
变式训练1:如何计算?
反思本节学习的两角和与差的三角函数公式对任意角也成立吗?
变式训练2:例3中如果去掉条件,对结果和求解过程会有什么影响?
变式训练3:下列等式成立吗?
cos(α+β)=cosα+cosβ
cos(α-β)=cosα-cosβ
sin(α+β)=sinα+sinβ
sin(α-β)=sinα-sinβ
设计意图
通过变式训练与讨论进一步培养学生自主探究、合作学习交流的能力,以熟悉公式的变形运用并掌握两角和与差的正余弦公式的特征及应用。
(五)小结反思,评价反馈
1、本节学习的内容有哪些?
2、两角和与差的三角函数公式有什么特点?运用两角和与差的三角函数公式可以解决哪些问题?
3、你通过本节学习有哪些收获?
设计意图
进一步熟悉公式,加深学生对公式的理解和认识,培养学生的归纳总结能力和交流表达能力,让学生获得成功体验。
(六)作业布置,练习巩固
书面:课本第121页A组1中间两题;2(2)(3)(4)B组2(2)
课后研究:课本第118页练习5;
设计意图巩固和理解知识,掌握两角和与差的三角函数公式。并引发学生对新知学习与探求的欲望和兴趣。
板书设计
两角和与差的正、余弦函数
公式
推导
例1
例2
例3
教后反思
本节教学设计首先通过问题情景阐述了两角差的余弦公式的产生背景,然后通过组织学生分析,讨论,并借助于单位圆中以原点为起点的两向量的数量积的两种表示,对α大于β使,cos(α-β)给出证明,进而用向量知识探究任意角的情形。这些均体现了数学中从特殊到一般的思想方法,符合新课改的基本理念。同时,例题1、2、3由浅入深,让学生在问题中探究,在探究中建构新知。使学生在已有基础上,充分利用归纳、类比等方法激发学生进一步探究的欲望,建立Cα±β模型,有利于学生数学思维水平的提高,同时及时巩固,应用,拓展延伸,加强了学生对新知的掌握和灵活运用。给学生思维以适当的引导并不一定会降低学生思维的层次,反而能够提高思维的有效性,从而体现教师主导作用和学生主体作用的和谐统一。但课后发现小结仓促,如果能再引导学生自我小结、反思。可能会更好.
关于教学设计的思考
1、本节课授课内容为《普通高中课程标准实验教科书·数学(4)》(北师大版)第三章第一节,本节课的教学重点是:两角和与差的余弦公式的推导和应用是本节的又一个重点,也是本节的一个难点。所以这节课效果的好坏,体现在对这两点实现的程度上,因此,例题、练习、作业应用绕这两方面设计。而平面内两向量的数量积的两种形式的应用又是推导两角差的余弦公式的关键;因此在复习,平面内两向量的数量积的两种形式是本节课必要的准备。
2、本节课采用“创设情境----提出问题----探索尝试----启发引导----解决问题”的过程来实现教学目标。有利于知识产生、发展、解决这一认知过程的完整体现。在教学手段上使用多媒体技术,有效增加课堂容量。在教学过程环节,采用问题教学,再逐步展开的方式,能够充分调动学生的学习积极性,让学生的探索具有明确的目的性,减少盲目性。在利用平面内两向量的数量积的几何形式、代数形式建立等式,而得到两角差的余弦公式后,利用代数思想推出两角和的余弦公式,使学生进一步体会数学思想的深刻性。通过对公式的对比,可以加深学生对公式特征的印象,同时体会公式的线形美与对称美,给学生以美的陶冶。作业的布置中,突出了学生学习的个体差异现实,使学有余力的学生产生挑战的心理感受,也为下一节内容的学习做准备。
3、数学的学习,主要是培养人的思维课程,强调思维构造,以问题解决为主的课程,既注重人的智慧获得,又注重人的情感发展,因而在教学中,应注意“完整的人”的数学教育,不搞“以智力开发为主的教育”,使学生成为真正的人。因此在课堂教学中,教学设计应从学生出发,给学生更多的自由,让他们真正参与,注重学习的过程,尤其重视以学生为主的数学活动,注重学生的自我完善,自我发展,不把学生当成接受知识的容器,要教会学生学会学习,尤其是有意义的接受学习和发现学习,“授人以鱼,不如授之以渔,授人以鱼祗救一时之及,授人以渔则可解一生之需”。在数学教育中,注重培养学生的自信,自重,自尊,使他们充满希望和成功,促进其健康人格的形成。只有这样,才能让数学课更有生机和人性,才能学生真正成为学习的主人。
角函数教学设计【第二篇】
教学目标
1、知识与技能
(1)了解周期现象在现实中广泛存在;
(2)感受周期现象对实际工作的意义;
(3)理解周期函数的概念;
(4)能熟练地判断简单的实际问题的周期;
(5)能利用周期函数定义进行简单运用。
2、过程与方法
通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观
通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点
重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具
投影仪
教学过程
创设情境,揭示课题
同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题)
探究新知
1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等)
(板书:一、我们生活中的周期现象)
2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:
①如何理解“散点图”?
②图1-1中横坐标和纵坐标分别表示什么?
③如何理解图1-1中的“H/m”和“t/h”?
④对于周期函数的定义,你的理解是怎样?
以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。
(板书:二、周期函数的概念)
3.[展示投影]练习:
(1)已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。
求f(x+2T),f(x+3T)
略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。
(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=2005,求f(11)
略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005
(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)
略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2
巩固深化,发展思维
1.请同学们先自主学习课本P4倒数第五行——P5倒数第四行,然后各个学习小组之间展开合作交流。
2.例题讲评
例1.地球围绕着太阳转,地球到太阳的距离y是时间t的函数吗?如果是,这个函数
y=f(t)是不是周期函数?
例2.图1-4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。若以钟摆偏离铅垂线MN的角θ的度数为变量,根据物理知识,摆心A到铅垂线MN的距离y也是θ的周期函数。
例3.图1-5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。
3.小组课堂作业
(1)课本P6的思考与交流
(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业
1.作业:习题第1,2,3题。
2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点。
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
1.作业:习题第1,2,3题。
2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点。
板书
角函数教学设计【第三篇】
一、 教学内容:三角函数
结构
二、要求
(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。
(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)
(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、 < 1271864542"> 的意义。
三、热点分析
1、 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强。
2、 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题 (1)与三角函数单调性有关的问题;
(2)与三角函数图象有关的问题;
(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;
(4)与周期有关的问题
3、 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、或技巧),分析综合(由因导果或执果索因),实现转化。解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解。
4、 立足课本、抓好基础。从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在中首先要打好基础。在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度。
四、复习建议
本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:
(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理。
(2)对公式要抓住其特点进行。有的公式运用一些顺口溜进行。
(3)三角函数是阶段研究的一类初等函数。故对三角函数的性质研究应结合一般函数研究方法进行对比。如定义域、值域、奇偶性、周期性、图象变换等。通过与函数这一章的对比,加深对函数性质的理解。但又要注意其个性特点,如周期性,通过对三角函数周期性的复习,类比到一般函数的周期性,再结合函数特点的研究类比到抽象函数,形成解决问题的能力。
(4)由于三角函数是我们研究的一门基础工具,近几年高考往往考查知识网络交汇处的知识,故学习本章时应注意本章知识与其它章节知识的联系。如平面向量、参数方程、换元法、解三角形等。(2003年高考应用题源于此)
(5)重视数学思想方法的复习,如前所述本章都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等。另外对有些具体问题还需要掌握和运用一些基本结论。如:关于对称问题,要利用y=sinx的对称轴为x=kπ+ (k∈Z),对称中心为(kπ,0),(k∈Z)等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征。在求三角函数值的问题中,要学会用勾股数解题的方法,因为高题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果。
(6)加强三角函数应用意识的训练,1999年高考理科第20题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成障碍,思路受阻。实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点。总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法。
(7)变为主线、抓好训练。变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化“变”意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律。针对高考中的题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法。另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点。同时应掌握三角函数与二次函数相结合的题目。
(8)在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找差异,讲究算理,才能立足基础,发展能力,适应高考。
在本章内容中,高考试题主要反映在以下三方面:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。
另外,还要注意利用三角函数解决一些应用问题。
高一数学三角函数课件【第四篇】
一、课前准备:
自主梳理
1.任意角
(1)角的概念的推广:
(2)终边相同的角:
2.弧度制:
弧度与角度的换算:
3.弧长公式:扇形的面积公式:
4.任意角的三角函数
(1)任意角的三角函数定义
(2)三角函数在各象限内符号口诀是。
5.三角函数线
()自我检测
1.度。
2.是第象限角。
3.在上与终边相同的角是。
4.角的终边过点,则。
5.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是。
6.若且则角是第象限角。
二、课堂活动:
例1填空题:
(1)若则为第象限角。
(2)已知是第三象限角,则是第象限角。
(3)角的终边与单位圆(圆心在原点,半径为的圆)交于第二象限的点,则。
(4)函数的值域为。
例2
(1)已知角的终边经过点且,求的值;
(2)为第二象限角,为其终边上一点,且求的值。
例3已知一扇形的中心角是,所在圆的半径是。
(1)若求扇形的弧长及该弧所在的弓形面积;
(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积。
课堂小结
三、课后作业
1.角是第四象限角,则是第象限角。
2.若,则角的终边在第象限。
3.已知角的终边上一点,则。
4.已知圆的周长为,是圆上两点,弧长为,则弧度。
5.若角的终边上有一点则的值为。
6.已知点落在角的终边上,且,则的值为。
7.有下列各式:①②③④,其中为负值的序号为。
8.在平面直角坐标系中,以轴为始边作锐角,它们的终边分别与单位圆相交于两点,已知两点的横坐标分别为,则。
9.若一扇形的周长为,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大值是多少?
的正弦、余弦和正切值。
角函数教学设计【第五篇】
教材分析:
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学 '相似三角形''勾股定理'等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:
锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
第一课时
教学目标:
知识与技能:
1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算
3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:
通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。
情感态度与价值观:
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。
重难点:
1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。
2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
教学过程:
一、复习旧知、引入新课
引入操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片)
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米。然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗?
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦
二、探索新知、分类应用
活动一问题的引入
问题一为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
锐角三角函数:训练题
1.在旧城改造中,要拆除一建 筑物AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区。现在从离点B 24 m远的建筑物CD的顶端C测得点A的仰角为45°,点B的俯角为30°,问离点B 35 m处的一保护文物是否在危险区内?
2.在高出海平面200 m的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离?
锐角三角函数练习题
1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为( )
=cosA′ =3cosA′ =cosA′ D.不能确定
上一篇:在沙漠中心教案【范例5篇】
下一篇:你说我画教案精编4篇