小数乘法教案【范例5篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“小数乘法教案【范例5篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

小数乘法教案【第一篇】

教学内容

教材第12页例7及练习三。

内容简析

例7由前面的三组算式经过转变,得出前后的结果相同,引出整数的运算定律在小数乘法中同样适用。

教学目标

1、使学生知道整数乘法的运算定律对于小数同样适用。

2、会运用乘法的运算定律进行一些小数乘法的简便计算。

3、在自主探究中,培养学生的迁移类推和对比的学习方法。

4、培养学生简算的意识,提高思维的灵活性。

教学重难点

运用乘法的运算定律进行小数乘法的简便运算;能选择合理的方法进行小数乘法的计算。

教法与学法

1、本课时解决小数乘法的简便计算时主要是运用迁移类推和对比的教学方法:首先由整数乘法的运算定律迁移到小数乘法,运用类比和比较的方法得出整数乘法的运算定律在小数乘法中同样适用,并能灵活运用。

2、本课时学生的学习主要是通过迁移类推、比较、概括、应用等方法来学习整数乘法的运算定律推广到小数的计算方法及类比的数学思想。

承前启后链

教学过程

一、情景创设,导入课题

竞赛导入:

师:同学们,今天我们先来进行课前比赛,看谁的知识学得棒。

第一轮:看谁算得对(口算)。

25×4=25×2=125×8=25×10=50×2=125×10=

4×8= 4×5= 5×8= 20×5= 32×5= 22×10=

学生口答。

第二轮:看谁算得巧。

25×73×468×125×8125×(10+8)

学生先独立完成,再请学生上台板演。

师:说说你是怎样算的运用了什么定律

师:今天我们就把整数乘法运算定律推广到小数。(板书课题)

品析:亲切的开场语调动了学生的学习热情,作为知识铺垫的复习题,用竞赛的方式呈现提高学生的学习积极性。

谈话导入:

师:谁来说说在整数乘法中学过哪些运算定律,怎样用字母表示

师适当板书:乘法交换律:a×b=b×a,乘法结合律(a×b)×c=a×(b×c),乘法分配律:(a+b)×c =a×c+b×c。 (板书)

师:那么整数乘法运算定律在小数中是否同样适用呢(板书课题)

品析:利用谈话引导学生说出学过的乘法运算定律的字母公式,从而引出整数乘法运算定律在小数乘法中是否同样适用的问题,激发学生的好奇心和求知欲,为新课的开展起到了良好的铺垫作用。

课件引入:

(出示PPT课件:内容是整数乘法简便算法与得数相连,用篮筐和篮球表示算式和得数)

师:你能将篮球投入相应的篮筐里面吗(学生依次回答)

师:这是什么运算(整数乘法简便运算)

师:那么,整数乘法的简便运算定律在小数乘法中能适用吗(板书课题)

品析:通过用课件设置情景图连线题引入整数乘法的简便运算方法,进一步追

问在小数乘法中是否同样适用,引起学生的质疑,激发学生探究的欲望。

二、师生合作,探究新知

◎引领学生分析教材第12页例7上面的三组算式,提取已知信息,并找出待解决问题。

(1)整理从中获得的信息。

①第一组算式前后两个因数交换了位置;

②第二组算式前一个算式先算前两个数,再同第三个数相乘,后一个算式先算后两个数,再同第一个数相乘;

③第三组算式前一个算式先算前两个数的和,再同第三个数相乘,后一个算式先分别求出积,再把两个积相加。

(2)提出的问题。

如:每组的两个算式之间有什么关系呢对比后发现了什么

◎自主学习,分组讨论,探究解题方法。

根据学习经验,出示另一组是整数乘法的三组算式,和现在的三组算式进行比较,学生可以自己找出它们之间的关系。

虽然学生现在还不知道整数乘法的运算定律在小数乘法中同样适用,但是经过回顾分析,可以发现相同点。此时把问题抛给学生,让他们分组讨论,自主探究结果,会发现下面几种规律:(详见配套课件部分)

发现:整数乘法交换律对于小数乘法也适用。

发现:整数乘法结合律对于小数也适用。

发现:整数乘法分配律对于小数也适用。

品析:本环节中借助例7上面的三组算式,通过计算发现三组算式中的数没变,只是转换成另一种形式进行计算,但结果不变。随即出示三组整数的乘法,让学生通过整数乘法和小数乘法的对比,把整数乘法的运算定律迁移类推到小数乘法中来,要鼓励学生重点讨论,特别是乘法分配律的算式转化思想,这种数学思想是需要逐步培养的,转化思想在数学学习中很重要,而本节课的整数乘法的运算定律推广到小数的知识,恰恰可以使学生建立数学转化思想,实际教学中要有的放矢地引导,同时在学生自主学习、分组讨论时要及时提示,让学生自己体会出整数乘法运算定律转化到小数乘法的过程和算式之间的转化过程。

◎顺承算式,研学例7。

在总结完三组算式的基础上,教师抛出问题:我们已经知道整数乘法的运算定律在小数乘法中同样适用,下面请同学们小组合作,完成例7。

学生经过简单的交流讨论后,可以得出结论:两个算式分别运用乘法结合律和乘法分配律进行计算。然后选派学生代表介绍自己的解答方法。

在学生自主探究的过程中适时引导学生思考以下问题:

品析:本环节是在研讨出整数乘法的运算定律在小数乘法中同样适用的基础上进行教学的,这个过程的学习,不仅仅是记住一个运算定律进行简便计算那么简单,更重要的是要引导学生体会参与推导转化的每一个环节,在整个过程中,体会出各种运算定律的转化和灵活应用。本环节中主要的教法是转化和应用,主要的学法是讨论、探究和应用。

三、反馈质疑,学有所得

在学习完例7的基础上,引导学生及时消化吸收,请同桌之间互相说一说常用的运算定律有哪些。然后教师提出质疑问题,引导学生在解决问题的过程中学会系统整理。

质疑一:在××4中先算×,或是×4还是×4呢

学生讨论后得出结论:应该先算×4,再同相乘,因为×4能凑成整数,再同相乘比较简便。

质疑二:在×202中,把202分成200+2时为什么一定要加括号呢

这个问题可以指导学生先组内讨论,归纳总结,引导学生明白把202分成200+2后,如果不加括号会改变原来算式的意义和数值的大小,所以这个问题可以先做初步探究得出结论:只有加上括号后,才不改变题意,还可以应用乘法分配律进行简便计算。

品析:本环节设置在本课新授知识完成之后,由于本节知识是通过整数乘法推

广到小数乘法,对于学生而言,从整数乘法转化到小数乘法,真正地明白算理是难点,通过再次质疑和研讨真正实现了学有所得。

四、课末小结,融会贯通

“本节课你学会了哪些知识还有什么是不明白的呢”

在师生共同总结之后,简单回顾乘法运算定律的计算方法:根据实际情况选用不同的运算定律进行简便计算,然后衔接下节课的学习任务,给大家留一个思考的话题:

小数乘法在实际问题中怎样灵活应用呢

五、教海拾遗,反思提升

回味课堂,发现亮点之处:两次质疑和讨论使学生的学习进入了二次消化吸收的过程,这次内化使学生真正明白了运算定律的算式转化道理。

反思过程,有待改进之处:学生对于一步直接运用乘法分配律时的转化过程弄不清楚,要根据学生的实际情况因材施教。

我的反思:

板书设计

整数乘法运算定律推广到小数

小学五年级数学《小数乘整数》教案【第二篇】

教学内容:

教材P2~3例1、例2及练习一第1、2、3题。

教学目标:

知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。

过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。

情感、态度与价值观:感受小数乘法在生活中的广泛应用。

教学重点:

理解并掌握小数乘整数的算理,学会转化。

教学难点:

能够运用算理进行小数乘整数的计算。

教学方法:

迁移类推,引导发现,自主探索,合作交流。

教学准备:

多媒体。

教学过程

一、情境导入

1、谈话:同学们都喜欢哪些运动呢?

(生回答自己喜欢的运动……)

2、导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?

3、提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?

引导学生观察并思考:图中小明他们想买3个元的风筝需要多少钱?你会列式吗?

指学生回答:×3,教师板书:×3。

4、探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?

生观察后回答:这道算式的因数有小数。

5、揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)

二、互动新授

1、初步探究竖式计算的方法。

(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)

(2)让学生说说自己的想法。

指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:

方法1:

连加。展示:++=(元)

师:你是怎么想的?

生:×3就表示3个相加,所以可以用乘法计算。(师板书意义)

方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元×3=9元,5角×3=1元5角,9元+1元5角=10元5角,即×3=(元)。

方法3:把元看作35角,则35角×3=105角=元。

(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算×37

引导:出示(边说边演示):

强调:我们可以把元转化成35角,用35角乘3得105角,再把105角转化成元。注意在列竖式时因数的末尾要对齐。

2、自主探究,进一步理解算理,掌握计算方法。

(1)教师出示算式:×5。

师:同学们看不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。

(2)学生汇报演示。

可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。

(3)比较:(见板书设计)

引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?

生:用乘法比较简便。

(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?

生:先把小数点向右移动2位转化成72×5=360,得出结果后再把积的小数点向左移动两位就是。

质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?

生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。

(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?

指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“O”时,应先点上小数点,再把“0”去掉。

师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?学生独立计算,汇报交流。

师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!

三、巩固拓展

1、教材第3页做一做第1题

想一想:小数乘整数与整数乘整数有什么不同?

2、教材第3页做一做第2题

同桌之间相互谈谈是怎样点小数点的。

3、指名板演教材第3页做一做第3题

4、不用计算,你能直接说出下面算式的结果吗?

148×23=3404 ×23=( ) ×23=( ) ×23=( ) ( )×( )=四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)

作业:教材第4页练习练习一第1、2、3题。

板书设计

小数乘整数

求几个相同加数的各的简便运算。

数学《小数乘法》教案【第三篇】

一、教学目标:

1、使学生知道整数乘法的运算定律对于小数乘法同样适用,能运用乘法的运算定律正确地、合理地、灵活地进行小数乘法的简便计算。

2、培养学生的观察能力,类推能力和灵活运用所学知识解决问题的能力。

3、让学生相互交流、合作、体验成功的喜悦。

二、教学重点:

理解整数乘法的运算定律在小数乘法中同样适用;运用运算定律进行小数乘法的简便计算。

三、教学难点:

运用运算定律进行小数乘法的简便计算。

四、课时安排:

1课时。

五、课前准备:

PPT课件探究记录单

教学过程

⊙创设情境,引入新课

1、引发思考。

想一想,小数四则混合运算的运算顺序和整数是一样的吗?(一样)

2、观察发现。

观察下面的每组算式,左右两边的结果相等吗?分别运用了什么定律?

7×12○12×7

(8×5)×4○8×(5×4)

(24+36)×5○24×5+36×5

(学生独立解答,并交流)

3、提出问题。

顽皮的小精灵给上面各题中的数加上了小数点,不用计算,你能很快知道答案吗?

×○×

(×)×○×(×)

(+)×○×+×

4、质疑,揭题。

整数乘法变成了小数乘法,它们能应用整数乘法的运算定律进行计算吗?这节课我们就来探究整数乘法的'运算定律适不适用于小数。(板书课题)

设计意图:生动的情境和亲切的开场语调动了学生的学习热情,作为知识铺垫的复习题以添上小数点的方式呈现出来,激发了学生的学习积极性。

⊙探究新知

1、验证整数乘法的运算定律对于小数乘法同样适用。

(1)探究验证方法。

师:怎样验证小精灵的猜想对不对呢?

预设生1:看两边的算式结果是否相等。

生2:举例验证。

(2)验证。

①笔算验证。

师:动笔算一算,运用运算定律得到的算式结果与原式是否相等?

(学生独立计算,汇报结果)

②举例验证。

小组合作:根据每个运算定律写一个小数乘法的例子,算出两边算式的结果,看是否相等,并填写探究记录单。

③交流、汇报自己的发现。

小结:我们通过实例推导证明了整数乘法的运算定律对于小数乘法同样适用。那么我们就可以利用乘法的运算定律来解决小数乘法的实际问题了。

设计意图:引导学生通过观察、计算、讨论等形式验证小精灵的猜想,从而自主发现规律:整数乘法的交换律、结合律和分配律对于小数乘法同样适用。

2、教学例7。

(1)课件出示例7中的第1道小题。

师:请你试着做一做,并说一说每一步各应用了哪一个运算定律。

(学生试做,并板演汇报)

××4

=×4×→乘法交换律

=1×

强调:运用乘法的运算定律进行简便计算时,要注意观察数的特点。

(2)课件出示例7中的第2道小题。

师:你认为解此题的关键是什么?

预设生:先把202改写成200+2,再应用乘法分配律进行计算。

师:你会做吗?谁来说一说这道题的解题思路?(指名上台讲解、演示)

设计意图:充分放手,让学生在运用乘法运算定律解决例7的过程中巩固新知,训练思维,使学生获得成功的体验。

⊙巩固新知,解决问题

1、在□里填上合适的数。(先让学生想一想,然后指名回答)

5、7×=□×□

12、5××8=□×□×□

2、1×+×=(□+□)×□

2、用简便方法计算。(先让学生在练习本上独立练习,再指名板演[],最后集体交流)

1、25×17×80

3、65×+×

5、4×199

3、判断。

(1)×=+×运用了乘法分配律。()

(2)×=×4×=8()

(3)×=×(10-1)=×10-×1=()

⊙全课总结

今天我们学习了什么知识?我们是怎样获得这些知识的?

⊙布置作业

教材13页4题。

板书设计

整数乘法运算定律推广到小数

a×b=b×a(a×b)×c=a×(b×c)(a+b)×c=a×c+b×c

对于小数乘法同样适用

小数乘法教案【第四篇】

教学目标

知识技能

1、初步体会整数的运算定律在小数中仍然适用。

2、能运用乘法运算定律使小数计算简便。

过程与方法

1、让学生经历自主探究的过程,培养学生的观察比较的能力,培养合理运用所学的知识解决新问题的能力。

2、发展学生思维的灵活性,培养学生感悟、运用知识的能力。

3、通过复习旧知识、自学教材中三个关系式,观察与分析,将旧知识推移到新知识里,培养学生迁移类推的能力。

情感、态度与价值观

1、引导学生积极参与探索、思考的过程。

2、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。

教学重难点

教学重点:

1、理解整数乘法的运算定律在小数乘法中同样适用。

2、运用运算定律进行小数乘法的简便计算。

教学难点:学生通过观察能选择合理的方法进行小数乘法的简便计算。

教学工具

ppt课件

教学过程

一、创设情境

师:同学们,我们已经学习了整数乘法的一些运算定律,哪位同学说一说整数乘法的运算定律有哪些?

生:乘法交换律、乘法结合律和乘法分配律。

师:同学们,你们能用字母来表示出这三个定律吗?

师:我们知道乘法运算定律在整数乘法中,可以使一些计算更简便了,那么在小数乘法中,这些运算定律是否也能运用?今天这节课我们就来研究这个问题。

二、探究新知

1、猜测

×○×

(×)×○×(×)

(+)×○×+×

师:猜一猜,每一组算式它们有怎样的关系?

2、验证

通过计算学生发现每一组算式都相等。

师:仔细观察每一组算式,它们有什么特点?

生:第一组算式运用了乘法交换律,第二组算式运用了乘法结合律,第三组算式运用了乘法分配律。

3、举例验证

师:通过上面的一组例子,能否就说明乘法运算定律在小数乘法中同样适用?

生:不能。

师:对,单纯的一组例子并没有说服力,我们需要多举几个例子进行验证。同学们你们能仿照第一组的例子,也写出三种这样的算式,并验证是否相等。

(学生动手写,让学生进行汇报,尽量让多个学生进行汇报,这样例子多了,结论更有说服力。)

学生汇报。(教师有目的的板书几组算式,让学生观察发现,乘法运算定律,在小数乘法中同样适用。)

师:小组同学相互交流,你能用一句话来概括你们的发现吗?(引导学生得出结论:整数乘法的运算定律在小数乘法中同样适用。)

4、应用

出示例7

师:同学们,仔细观察下面两题,看看它们能不能用简便方法计算。

××4 ×202

(1)让学生独立思考,然后尝试写在练习本上。

(2)指明学生板演。

(3)让学生说一说每一题运用了乘法的什么运算定律?

师:第①题,为什么先让和4相乘?

生:因为和4相乘,正好得1,计算起来比较的简便。(使学生体会理解算前先观察题中有没有特殊的数,如果两个数的积是1、10、100、1000等等,运用运算定律先算,这样使计算简便。)

师:你认为第②小题,解题的关键是什么?(使学生体会到先把特殊的数进行分解,然后才能进行简算。)

生:把202分成200+2,用乘法分配律完成。

师:在小数乘法中,要使计算简便,我们应该注意什么?(启发学生思考,认真审题,要观察数的特点。)

(4)交流评价。

三、方法应用

师:刚才,我们运用了乘法的运算定律,使小数乘法简便了许多,下面请同学们再来看看下面这道题,怎样算合理简便,你能想出几种算法

×

(1)让学生独立做。

(2)小组内进行交流。

(3)汇报(体现算法多样化)

(4)评价总结。

四、巩固练习:完成做一做题目。

五、梳理知识,总结升华

谈话:这节课你都获得了哪些知识?在本节课中你最大的收获是什么?

六、布置作业:练习三第题。

小数乘法教案【第五篇】

教学目标:

1.让学生自主探索小数乘法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释。

2.使学生会用“四舍五入”法截取积是小数的近似值。

3.使学生理解整数乘法运算定律对于小数同样适用,并会运用这些定律进行关于小数乘法的简便运算,进一步发展学生的数感。

4.使学生体会小数乘法是解决生产、生活中实际问题的重要工具。

教学措施:

1.重点引导学生用转化的方法学习小数乘法。

2.指导学生对小数乘法的算理做出合理的解释,提高简单的推理能力。

3.注意引导学生探索因数与积之间的大小关系的规律。

课时安排:6课时。

第一课时小数乘以整数

教学目标:

1、使学生理解小数乘以整数的计算方法及算理。

2、培养学生的迁移类推能力。

3、引导学生探索知识间的联系,渗透转化思想。

教学重点:小数乘以整数的算理及计算方法。

教学难点:确定小数乘以整数的积的小数点位置的方法。

教学过程:

一、复习

①下面各数去掉小数点有什么变化?

②把353缩小到时它的1/10是多少?缩小到它的1/100呢?1/1000呢?

二、引入尝试:

大家喜欢放风筝吗?今天我就带领大家一块去买风筝。

1、小数乘以整数的意义及算理。

出示例1的图片,引导学生理解题意,从图中你了解到了哪些数学信息?

(1)例1:燕子风筝每个元,买3个风筝多少元?(让学生独立试着算一算)

(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)

用加法计算:++=元

元=3元5角

3元×3=9元

5角×3=15角

9元+15角=元

用乘法计算:×3=元

元=35角35×3=105105角=10元5角=元

理解3种方法,重点研究第三种算法及算理。

(3)理解意义。为什么用×3计算?×3表示什么?(3个或的3倍。)

(4)初步理解算理。怎样算的?

把元看作35角

3.5元扩大10倍35

×3×3

元缩小到它的1/10105

105角就等于元

(5)买5个元的风筝要多少元呢?会用这种方法算吗?P2做一做

2、小数乘以整数的计算方法。

象这样的元的几倍同学们会算了,那不代表钱数的×5你们会算吗?能不能将它转化为已学过的知识来解答呢?(生试算,指名板演。)

(1)生算完后,小组讨论计算过程,然后板书,并指名说是如何算的。

(2)强调依照整数乘法用竖式计算。

(3)示范:扩大100倍72

×5×5

缩小到它的1/100360

引导性提问:

变成72发生了怎样的变化?

72×5算完了,再该怎么办?

为什么要缩小到它的1/100?

(4)回顾对于×5,刚才是怎样进行计算的?

使学生得出:先把被乘数扩大100倍变成72,被乘数扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小到它的1/100。(提示:根据小数的基本性质,将小数末尾的0可以去掉)

注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。

(5)小结小数乘整数计算方法

l计算

7×425×7

××7

观察这2组题,想想与整数乘整数有什么不同?

怎样计算小数乘以整数?

①先把小数扩大成整数;

②按整数乘法的法则算出积;

③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

三、运用

1、填空。

4.5()()

×3×3×2×2

()135()148

2、判断

×2

3、P2做一做

三、体验:(1)今天我们学习了什么?(板书课题)

(2)小数乘以整数的计算方法是什么?

四、作业:P7练习一第1、2、3题。

第二课时小数乘小数

1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。

2、比较正确地计算小数乘法,提高计算能力。

3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。

教学重点:小数乘法的计算法则。

教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。

教学过程:

一、引入尝试

1、出示例3图:同学们最近我们校园宣传栏的玻璃碎了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:×)

2、尝试计算

观察算式和前面所学的算式有什么不同?

这就是我们要学的“小数乘小数”,两个因数都是小数,怎样计算呢?和同桌讨论一下,然后自己尝试练习,指名板演。

3、×,刚才是怎样进行计算的?

引导学生得出(先把被乘数扩大10倍变成12,积就扩大10倍;再把乘数扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。)

4、观察一下,因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)想一想:×的积中有几位小数?×呢?

5、小结小数乘法的计算方法。

二、教学例4

请做下面一组练习

(1)练习(先口答下列各式积的小数位数,再计算)P4做一做

(2)引导学生观察思考。

①你是怎样算的?(先整数乘法法则算出积,再给积点上小数点。)

②怎样点小数点?(因数中一共有几位小数,就从积的最右边起,数出几位,点上小数点。)③计算×时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)

通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?

(3)根据学生的回答,逐步抽象概括出页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)

(4)练习:

①判断,把不对的改正过来。

××

96782426

②根据1056×27=28512,写出下面各题的积。

×=×=×27=×=

三、应用

1、在下面各式的积中点上小数点。

×××28

11650001632232625408

2436112505712

2、P5做一做

3、P8页5题:先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。

四、体验:回忆这节课学习了什么知识?

五、作业:P8第7、9题,P9第13题

第三课时小数乘小数

教学目标:

1、使学生进一步掌握小数乘法的计算法则,并能正确计算。

2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

3、理解倍数可以是整数、也可以是小数,学会解答倍数是小数的实际问题。

4、养成认真计算,及时检验的良好学习习惯。

教学重点:运用小数乘法的计算法则;正确计算小数乘法。

教学难点:正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

教学过程:

一、复习准备:

1、口算:页10题。

×67××××

老师抽卡片,学生写结果,集体订正。

2、不计算,说出下面的积有几位小数。(P9第10题)

3、思考并回答。

(1)做小数乘法时,怎样确定积的小数位数?

(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。

二、新授:

1、教学例5:非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的倍,鸵鸟的最高速度是多少千米/小时?

(1)想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的最高速度是非洲狗的倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)

(2)是这样的吗?我们一起来算一算?

①怎样列式?

②为什么这样列式?(求56的倍是多少,所以用乘法。)

使学生明确:现在倍数也可以是比1大的小数。

(3)生独立完成,指名板演,集体订正。

(4)算得对吗?用什么方法可以判断他做正确没有?所以每个小朋友要养成认真做题,仔细检查的良好习惯。

(5)通过刚才同学们的计算、验算,鸵鸟的速度是千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。

2、看乘数,比较积和被乘数的大小。

①(出示练习一第10题中积和被乘数的大小)先计算。

②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?

③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为的乘数是比1小,求的积还不足一个,所以积比被乘数小;而×3的乘数是3比1大,求的积是

的3倍(或3个那么多),所以积比被乘数大。

④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)

⑤专项练习:练习一第12题

先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。

三、运用

1、做一做:×=×=

先判断,把不对的改正过来。

2、P9页第13题

四、体验:今天,你有什么收获?

五、作业:P8页8题,P9页11、14题

第四课时积的近似值

教学内容:P10例6、做一做,P13练习二第1—3题。

教学目的:

1、使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。

2、培养学生根据具体情况解决实际问题的能力。

教学重点:用“四舍五人法”截取积是小数的近似值的一般方法。

教学难点:根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。

教学过程:

一、激发:

1、口算。

××××

+××

××××

2、用“四舍五人法”求出每个小数的近似数。(投影出示)

保留整数保留一位小数保留两位小数

思考并回答:(根据学生的回答填空)

(1)怎样用“四舍五人法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?

(2)按要求,它们的近似值各应是多少?

3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)

二、尝试:

谈话引出例题:

生列式,板书:×45

生独立计算出结果,指名板演并集体订正,说一说是怎样算的。

引导学生观察、思考:

(1)积的小数位数这么多!可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。

(2)保留一位小数,看哪一位?根据什么保留?

221381