《基本不等式》教案【精选5篇】

网友 分享 时间:

【导言】此例“《基本不等式》教案【精选5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

基本不等式教案【第一篇】

课题: 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络。数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实。?

根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助。? 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;

(二)能力目标:让学生探究用基本不等式解决实际问题

(三)情感、态度和价值观目标:

通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;? 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具。通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学。而不是觉得数学只是一门枯燥无味的推理学科。在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1.采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;?

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;?

3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。?? 五、教学重点及难点 教学重点:1.构建基本不等式解决函数的值域、最值问题。?

2.让学生探究用基本不等式解决实际问题;?

教学难点:1.让学生探究用基本不等式解决实际问题;?

2.基本不等式应用时等号成立条件的考查;?

六、教学过程 教师活动 学生活动 设计意图 (一)导入新课

(二)推进新课

已知 ,若ab为常数k,那么a+b的值如何变化?

若a+b为常数s,那么ab的值如何变化?

老师用投影仪给出本节课的第一组问题

(1)求函数y=2x2+ (x>0)的最小值。?

(2)求函数y=x2+ (x>0)的最小值。?

(3)求函数y=3x2-2x3(0

(4)求函数y=x(1-x2)(0

(5)设a>0,b>0,且a2+ =1,求 的最大值。?

(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题。根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值。 ?

(四)例题精析?

例某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少?

当且仅当a=b时,a+b就有最小值为2k.?

当且仅当a=b时,ab就有最大值 (或ab有 最大值 ).?

学生完成

留五分钟的时间让学生思考,合作交流

(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)?

学生思考、回答,

2020高中数学基本不等式教学教案【第二篇】

[教学目标]

依据《新标准》对《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题(求最值、证明不等式);培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、不等式的证明)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

二、 [教学重点]

基本不等式 的证明过程及应用。

三、 [教学难点]

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等)的正确理解;

2、灵活利用基本不等式求解实际问题中的最大值和最小值。

四、 [教学方法]

本节课采启发诱导、讲练结合的教学方法,结合现代信息技术多媒体课件、几何画板作为教学辅助手段,加深学生对基本不等式的理解。

[教学用具]

多媒体、几何画板

六、 [教学过程]

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:

(一)、创设情景,提出问题;

上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。

同时,(几何画板辅助教学)通过几何画板演示,

让学生更直观的抽象、归纳出结论:

(二)、抽象归纳:

一般地,对于任意实数 ,有 ,当且仅当 时,等号成立。

[问] 你能给出它的证明吗?

学生在黑板上板书。

特别地,当 时,在不等式 中,以 、 分别代替 ,得到什么?

答案: 。

归纳总结

如果 都是正数,那么 ,当且仅当 时,等号成立。

我们称此不等式为基本不等式。 其中 称为 的算术平均数, 称为 的几何平均数。

(三)、理解升华:

1、文字语言叙述:

两个正数的算术平均数不小于它们的几何平均数。

2、符号语言叙述:

若 ,则有 ,当且仅当 时, 。

[问] 怎样理解“当且仅当”?

3、探究基本不等式证明方法:

[问] 如何证明基本不等式?

方法一:作差比较或由 展开证明。

方法二:分析法。

分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。

4、探究基本不等式的几何意义:

2020高中数学基本不等式教学教案【第三篇】

教学目标

1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;

2.过程与方法:通过实例探究抽象基本不等式;

3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣

教学重点

应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;

教学难点

基本不等式 等号成立条件

教学过程

1.课题导入

基本不等式 的几何背景:

如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?

教师引导学生从面积的关系去找相等关系或不等关系

2.讲授新课

1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。

当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。

2.得到结论:一般的,如果

3.思考证明:你能给出它的证明吗?

证明:因为

所以, ,即

)从几何图形的面积关系认识基本不等式

特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,

通常我们把上式写作:

2)从不等式的性质推导基本不等式

用分析法证明:

要证 (1)

只要证 a+b (2)

要证(2),只要证 a+b- 0 (3)

要证(3),只要证 ( - ) (4)

显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。

3)理解基本不等式 的几何意义

探究:课本第98页的“探究”

在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。你能利用这个图形得出基本不等式 的几何解释吗?

易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB

即CD= .

这个圆的半径为 ,显然,它大于或等于CD,即 ,其中当且仅当点C与圆心重合,即a=b时,等号成立。

因此:基本不等式 几何意义是“半径不小于半弦”

评述:1.如果把 看作是正数a、b的等差中项, 看作是正数a、b的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项。

2.在数学中,我们称 为a、b的算术平均数,称 为a、b的几何平均数。本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数。

例1 已知x、y都是正数,求证:

(1) ≥2;

(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.

分析:在运用定理: 时,注意条件a、b均为正数,结合不等式的性质(把握好每条性质成立的条件),进行变形。

解:∵x,y都是正数 ∴ >0, >0,x2>0,y2>0,x3>0,y3>0

(1) =2即 ≥2.

(2)x+y≥2 >0 x2+y2≥2 >0 x3+y3≥2 >0

∴(x+y)(x2+y2)(x3+y3)≥2 ·2 ·2 =8x3y3

即(x+y)(x2+y2)(x3+y3)≥8x3y3.

3.随堂练习

1.已知a、b、c都是正数,求证

(a+b)(b+c)(c+a)≥8abc

分析:对于此类题目,选择定理: (a>0,b>0)灵活变形,可求得结果。

解:∵a,b,c都是正数

∴a+b≥2 >0

b+c≥2 >0

c+a≥2 >0

基本不等式教学课件【第四篇】

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7。

第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4。

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以( 除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1 (回答)用小于号“<”或大于号“>”填空。

(1)7 ___ 4;

(2)- 2____6;

(3)- 3_____ -2;

(4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:

性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。

(让同学回答。)

性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)

性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)

现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。

不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。

生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。

师:对a和b有什么要求吗?对c有什么要求?

生:没有什么要求。

师:哪位同学来回答第二、三条性质?

生甲:如果a0, 那么acb,且c>0,那么ac>bc(或

生乙:如果abc(或 );如果a>b,且c<0,那么ac

师:这两条性质中,对a、b、c有什么要求?

生:对a、b没什么要求,特别要注意c是正数还是负数。

师:很好,c可以为零吗?

生:c不能为零。因为c为零时,任何不等式两边都乘以零就变成等式了。

师:好!应用刚才学到的基本性质,我们来看下面的例题。

[例1]按照下列条件,写出仍能成立的不等式:

(1)5<9,两边都加上-3;

(2)9>4,两边都减去10;

(3)-5<3,两边都乘以4;

(4)14>-8,两边都除以-2。

解 (1)根据不等式基本性质1,在不等式59的两边都加上-3,不等号的方向不变,所以

5+(-3)<9+(-3),

2<6

(2)根据不等式基本性质1,得

9-10>4-10

-1>-6

(3)根据不等式基本性质2,得

-5×4<3×4

-20<12

(4)根据不等式基本性质3,得

14÷(-2)<(-8)÷(-2)

-7<4

[例2]设a>b,用不等号连结下列各题中的两式:

(1)a-3与b-3;

(2)2a与2b;(3)-a与-b。

师:哪一位同学来做这题?解题时,要讲清一步的理由。

生甲:因为a>b,两边都减去3,由不等式的基本性质1,得

a-3>b-3

师:很好,大家都是这样做的吗?

生乙:我是这样做的,因为a>b,两边都加上(-3),由基本性质1,得

a-3>b-3

师:好!这两位同学从不同的角度来分析题目,都得到了正确的结论。

生丙:因为a>b,2>0,由基本性质2,得2a>2b。

生丁:因为a>b,-1>0,由基本性质3,得-a>-b。

师:下面我们来看一组较复杂的问题,请大家都来开动脑筋,认真审题,仔细分析。[例3]判断以下各题的结论是否正确,并说明都理由:

(1)如果a>b,且c>0,那么ac>bd;

(2)如果a>b,那么ac2>bc2;

(3)如果ac2>bc2,那么a>b;

(4)如果a>b,那么a-b>0;

(5)如果ax>b,且a≠0,那么x< ;

(6)如果a+b>a;

生甲:(1)不对,当c=d≤0时,ac>bd不成立。

生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2>bc2不成立。

生丙:(3)对,因为ac2>bc2成立,则c2一定大于零,根据不等式基本性质2,得a>b出。

(4)对,根据不等式基本性质,由a>b,两边减去b得a-b>0。

(5)不对,当a<0时,根据不等式基本性质3,得。

(6)不对,因为当b<0时,根据不等式基本性质1,得a+b<a;而当b=0时,则有a+b=a。

师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。

课外做以下作业:略。

教案说明

(1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。

(2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。

(3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

基本不等式教学课件【第五篇】

在前两节课的研究当中,学生已掌握了一些简单的不等式及其应用,并能用不等式及不等式组抽象出实际问题中的不等量关系,掌握了不等式的一些简单性质与证明,研究了一元二次不等式及其解法,学习了二元一次不等式(组)与简单的线性规划问题。本节课的研究是前三大节学习的延续和拓展。另外,为基本不等式的应用垫定了坚实的基础,所以说,本节课是起到了承上启下的作用。本节课是通过让学生观察第24届国际数学家大会的会标图案中隐含的相等关系与不等关系而引入的通过分析得出基本不等式,然后从三种角度对基本不等式展开证明及对基本不等式展开一些简单的应用,进而更深一层次地从理性角度建立不等观念。教师应作好点拨,利用几何背景,数形结合做好归纳总结、逻辑分析,并鼓励学生从理性角度去分析探索过程,进而更深层次理解基本不等式,鼓励学生对数学知识和方法获得过程的探索,同时也能激发学生的学习兴趣,根据本节课的教学内容,应用观察、类比、归纳、逻辑分析、思考、合作交流、探究,得出基本不等式,进行启发、探究式教学并使用投影仪辅助。

教学重点

1、创设代数与几何背景,用数形结合的思想理解基本不等式;

2、从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路。

教学难点

1、对基本不等式从不同角度的探索证明;

2、通过基本不等式的证明过程体会分析法的证明思路。

教具准备 多媒体及课件

三维目标

一、知识与技能

1、创设用代数与几何两方面背景,用数形结合的思想理解基本不等式;

2、尝试让学生从不同角度探索基本不等式的证明过程;

3、从基本不等式的证明过程进一步体会不等式证明的常用思路,即由条件到结论,或由结论到条件。

二、过程与方法

1、采用探究法,按照联想、思考、合作交流、逻辑分析、抽象应用的方法进行启发式教学;

2、教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;

3、将探索过程设计为较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣。

三、情感态度与价值观

1、通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行归纳、抽象,使学生感受数学、走进数学,培养学生严谨的数学学习习惯和良好的思维习惯;

2、学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;

3、通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘、数学的简洁美、数学推理的严谨美,从而激发学生的学习兴趣。

教学过程

导入新课

探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗?

(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)

推进新课

师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找?

(沉静片刻)

生 应该先从此图案中抽象出几何图形。

师 此图案中隐含什么样的几何图形呢?哪位同学能在黑板上画出这个几何图形?

(请两位同学在黑板上画。教师根据两位同学的板演作点评)

(其中四个直角三角形没有画全等,不形象、直观。此时教师用投影片给出隐含的规范的几何图形)

师 同学们观察得很细致,抽象出的几何图形比较准确。这说明,我们只要在现有的基础上进一步刻苦努力,发奋图强,也能作出和数学家赵爽一样的成绩。

(此时,每一位同学看上去都精神饱满,信心百倍,全神贯注地投入到本节课的学习中来)

[过程引导]

师 设直角三角形的两直角边的长分别为a、b,那么,四个直角三角形的面积之和与正方形的面积有什么关系呢?

生 显然正方形的面积大于四个直角三角形的面积之和。

师 一定吗?

(大家齐声:不一定,有可能相等)

师 同学们能否用数学符号去进行严格的推理证明,从而说明我们刚才直觉思维的合理性?

生 每个直角三角形的面积为,四个直角三角形的面积之和为2ab。正方形的边长为,所以正方形的面积为a2+b2,则a2+b2≥2ab。

师 这位同学回答得很好,表达很全面、准确,但请大家思考一下,他对a2+b2≥2ab证明了吗?

生 没有,他仍是由我们刚才的直观所得,只是用字母表达一下而已。

师 回答得很好。

(有的同学感到迷惑不解)

师 这样的叙述不能代替证明。这是同学们在解题时经常会犯的错误。实质上,对文字性语言叙述证明题来说,他只是写出了已知、求证,并未给出证明。

(有的同学窃窃私语,确实是这样,并没有给出证明)

师 请同学们继续思考,该如何证明此不等式,即a2+b2≥2ab。

生 采用作差的方法,由a2+b2-2ab=(a-b)2,∵(a-b)2是一个完全平方数,它是非负数,即(a-b)2≥0,所以可得a2+b2≥2ab。

师 同学们思考一下,这位同学的证明是否正确?

生 正确。

[教师精讲]

师 这位同学的证明思路很好。今后,我们把这种证明不等式的思想方法形象地称之为“比较法”,它和根据实数的基本性质比较两个代数式的大小是否一样。

生 实质一样,只是设问的形式不同而已。一个是比较大小,一个是让我们去证明。

师 这位同学回答得很好,思维很深刻。此处的比较法是用差和0作比较。在我们的数学研究当中,还有另一种“比较法”。

(教师此处的设问是针对学生已有的知识结构而言)

生 作商,用商和“1”比较大小。

师 对。那么我们在遇到这类问题时,何时采用作差,何时采用作商呢?这个问题让同学们课后去思考,在解决问题中自然会遇到。

(此处设置疑问,意在激发学生课后去自主探究问题,把探究的思维空间切实留给学生)

[合作探究]

师 请同学们再仔细观察一下,等号何时取到。

生 当四个直角三角形的直角顶点重合时,即面积相等时取等号。

(学生的思维仍建立在感性思维基础之上,教师应及时点拨)

师 从不等式a2+b2≥2ab的证明过程能否去说明。

生 当且仅当(a-b)2=0,即a=b时,取等号。

师 这位同学回答得很好。请同学们看一下,刚才两位同学分别从几何图形与不等式两个角度分析等号成立的条件是否一致。

(大家齐声)一致。

(此处意在强化学生的直觉思维与理性思维要合并使用。就此问题来讲,意在强化学生数形结合思想方法的应用)

板书:

一般地,对于任意实数a、b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立。

[过程引导]

师 这是一个很重要的不等式。对数学中重要的结论,我们应仔细观察、思考,才能挖掘出它的内涵与外延。只有这样,我们用它来解决问题时才能得心应手,也不会出错。

(同学们的思维再一次高度集中,似乎能从不等式a2+b2≥2ab中得出什么。此时,教师应及时点拨、指引)

师 当a>0,b>0时,请同学们思考一下,是否可以用a、b代替此不等式中的a、b。

生 完全可以。

师 为什么?

生 因为不等式中的a、b∈R。

师 很好,我们来看一下代替后的结果。

板书:

即 (a>0,b>0)。

师 这个不等式就是我们这节课要推导的基本不等式。它很重要,在数学的研究中有很多应用,我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数,即两个正数的算术平均数不小于它们的几何平均数。

(此处意在引起学生的重视,从不同的角度去理解)

师 请同学们尝试一下,能否利用不等式及实数的基本性质来推导出这个不等式呢?

(此时,同学们信心十足,都说能。教师利用投影片展示推导过程的填空形式)

要证:,①

只要证a+b≥2,②

要证②,只要证:a+b-2≥0,③

要证③,只要证:④

显然④是成立的,当且仅当a=b时,④中的等号成立,这样就又一次得到了基本不等式。

(此处以填空的形式,突出体现了分析法证明的关键步骤,意在把思维的时空切实留给学生,让学生在探究的基础上去体会分析法的证明思路,加大了证明基本不等式的探究力度)

[合作探究]

老师用投影仪给出下列问题。

如图,AB是圆的直径,点C是AB上一点,AC=a,BC=b。过点C作垂直于AB的弦DD′,连结AD、BD。你能利用这个图形得出基本不等式的几何解释吗?

(本节课开展到这里,学生从基本不等式的证明过程中已体会到证明不等式的常用方法,对基本不等式也已经很熟悉,这就具备了探究这个问题的知识与情感基础)

[合作探究]

师 同学们能找出图中与a、b有关的线段吗?

生 可证△ACD ∽△BCD,所以可得。

生 由射影定理也可得。

师 这两位同学回答得都很好,那ab与分别又有什么几何意义呢?

生表示半弦长,表示半径长。

师 半径和半弦又有什么关系呢?

生 由半径大于半弦可得。

师 这位同学回答得是否很严密?

生 当且仅当点C与圆心重合,即当a=b时可取等号,所以也可得出基本不等式 (a>0,b>0)。

课堂小结

师 本节课我们研究了哪些问题?有什么收获?

生 我们通过观察分析第24届国际数学家大会的会标得出了不等式a2+b2≥2ab。

生 由a2+b2≥2ab,当a>0,b>0时,以、分别代替a、b,得到了基本不等式 (a>0,b>0)。进而用不等式的性质,由结论到条件,证明了基本不等式。

生 在圆这个几何图形中我们也能得到基本不等式。

(此处,创造让学生进行课堂小结的机会,目的是培养学生语言表达能力,也有利于课外学生归纳、总结等学习方法、能力的提高)

师 大家刚才总结得都很好,本节课我们从实际情景中抽象出基本不等式。并采用数形结合的思想,赋予基本不等式几何直观,让大家进一步领悟到基本不等式成立的条件是a>0,b>0,及当且仅当a=b时等号成立。在对不等式的证明过程中,体会到一些证明不等式常用的思路、方法。以后,同学们要注意数形结合的思想在解题中的灵活运用。

布置作业

活动与探究:已知a、b都是正数,试探索, ,,的大小关系,并证明你的结论。

分析:(方法一)由特殊到一般,用特殊值代入,先得到表达式的大小关系,再由不等式及实数的性质证明。

(方法二)创设几何直观情景。设AC=a,BC=b,用a、b表示线段CE、OE、CD、DF的长度,由CE>OE>CD>DF可得。

板书设计

基本不等式的证明

一、实际情景引入得到重要不等式

a2+b2≥2ab

二、定理

若a>0,b>0

课后作业:

证明过程探索:

221381