《合并同类项》教学设计实用3篇

网友 分享 时间:

【前言导读】这篇优秀教案“《合并同类项》教学设计实用3篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

合并同类项教学设计案例1

从具体问题情景中探索合并同类项的含义。

逆用乘法分配律探求合并同类项法则。

通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。

1、在具体情境中理解、掌握同类项的定义;

2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。

3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。

4、通过“合并同类项”的学习,继续培养学生的运算能力。

1、重点:同类项的概念,合并同类项的法则。

2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。

3、疑点:同类项与同次项的区别。

投影仪(电脑)、自制胶片

过程导学问题设计学生活动批注

创设情景(出示投影)

如图的长方形由两个小长方形组成,求这个长方形的面积。

①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:

(8+5)n

②接着引导学生写出等式:

8n+5n=(8+5)n=13n

启发学生观察上式是怎样的一种变化;

它类似于我们前面学过的什么运算律

为什么8n与5n可以合并成一项(组织学生充分

讨论,从而引出同类项的概念)

③同类项的概念

举出一些具有代表性的同类项的实际例子。

如:-7a2b , 2a2b ;

8n , 5n ;

3x2, -x2

引导学生观察上面给出的几组代数式具有什么共同特点:

①所含的字母相同

②相同字母的指数也相同

教师顺势提出同类项的概念

强调同类项必须满足以上两条

④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。学生观察,思考

(反例巩固)出示问题;

x与y,

a2b与ab2,

-3pa与3pa

abc与ac,

a2和a3 是不是同类项

(给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)

其中:a2b与ab2可让学生充分讨论交流。

(教师强调“必须是相同字母的指数相同”这句话的含义 ,从而分清同类项与同次项的区别)

(引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。

紧扣定义

加以判别

例1 根据乘法分配律合并同类项

(1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3

(教师强调乘法分配律的逆运用)

(学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)

由此引导学生出合并同类项的法则:

在合并同类项时,只把同类项的系数相加减,字母和字母的指数不变。

学生思考解答(找二生板演其他学生独立写出过程)

可根据情况适当复习关于乘法分配律的有关知识,通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。

例2,合 并同类项

①3a+2b-5a-b

②-4ab+8-2b2-9ab-8

给学生留有足够的独立的思考时间

找二生到黑板上板演。学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。

强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。

教师不给任何提示

学生在练习本上完成,然后同桌同学互相交换评判。

(二生到黑板上板演)

应用补充例题

例3,求代数式的值

①2x2-5x+x2+4x-3 x2-2 其中x=

②-3 x2+5x- x2+x-1 其中x=2

出示 例题后,教师不要给任何提示,先让学生独立思考。

部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。

问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。

独立完成分析比较寻求简便方法

练习1、合并同类项

①3y+ y=__________

②3b-3a2+1+a3-2b=____ _______

③2y+6y+2xy-5=_____________

2、求代数式的值

8 p2-7q+6q-7p2-7

其中p=3 q=3

练习交流合作

合并同类项教学设计案例2

本节课选自湘教版《数学》七年级上册§节,是学生进入初中阶段,在引入用字母表示数,学习了代数式、多项式以及有理数运算的基础上,对同类项进行合并的探索、研究。合并同类项是本章的一个重点,其法则的应用是一次式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算律的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

七年级的学生具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。所授班级中,已初步形成合作交流、勇于探索的学习风气。

基与上面对教材与学情的分析,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:

教学目标:知识目标:

1、了解同类项、多项式相等的概念。

2、掌握合并同类项的法则。

能力目标:

1、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。

2、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

情感目标:

1、通过设置具体的问题情境,以小组为单位开展探究、交流等活动,让学生感受合作的愉快与收获。

2、实施开放性教学,让学生获得成功的体验。

3、通过设置不同层次的问题,使不同程度的学生得到不同的发展。

教学重点: 同类项的概念、合并同类项的法则及应用。

教学难点: 正确判断同类项;准确合并同类项。

1、 采用“问题情境---建立模型---解释、应用与拓展”的模式展开教学。让学生经历同类项概念和合并同类项法则的形成与应用过程,从而更好地理解知识,掌握其思想方法和应用技能。

2、 引导学生主动地从事观察、猜想、推理、论证、交流与反思等数学活动;鼓励学生自主探索与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索、学会学习。

3、 关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。

为了达到教学目标,实现我的设计效果,我采用引导、探究法为主的教学法,应用多媒体课件运用cai辅助教学。设计以下主要教学流程:

1)创设五个步步深入的问题情境:目的在于引发学生学习的积极性,启发学生的探索欲望,同时为本课学习做好准备和铺垫。

2)问题探讨:让学生通过自主探索与合作交流认识同类项,了解数学分类的思想;获得合并同类项的法则,体验探求规律的思想方法。同时让学生体验合作的愉快与收获。感受成功的喜悦。

3)火眼金睛与看谁做的又快又准:让学生加深对同类项的认识,加强对合并同类项法则的理解。

4)例题讲解与巩固练习:让学生掌握在多项式中判断出同类项和运用法则进行合并同类项运算的技能,使学生的知识、技能螺旋式上升。

5)课堂小结:通过学生的自我反思,将知识条理化、系统化。

6)拓展延伸与挑战自我:激发学生的学习热情,为他们提供更广泛的发展空间。

我的教学目的能不能实现,设计效果能不能达到,就只能看我接下来上课的情况了!我的说课就简单说到这里,谢谢大家!

《合并同类项》教案3

教学目标

1.会利用合并同类项的方法解一元一次方程;(重点)

2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用。(难点)

教学过程

一、情境导入

1.等式的基本性质有哪些?

2.解方程:(1)x-9=8; (2)3x+1=4.

3.下列各题中的两个项是不是同类项?

(1)3xy与-3xy;  (2)与;

(3)2abc与9bc; (4)3mn与-nm;

(5)4xyz与4xyz; (6)6与x.

4.能把上题中的同类项合并成一项吗?如何合并?

5.合并同类项的法则是什么?依据是什么?

二、合作探究

探究点一:利用合并同类项解简单的一元一次方程

例1解下列方程:

(1)9x-5x=8;

(2)4x-6x-x=15.

解析:先将方程左边的同类项合并,再把未知数的系数化为1.

解:(1)合并同类项,得4x=8.

系数化为1,得x=2.

(2)合并同类项,得-3x=15.

系数化为1,得x=-5.

方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式。

探究点二:根据“总量=各部分量的和”列方程解决问题

例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?

解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程。

解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).

答:黑色皮块有12个,白色皮块有20个。

方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解。此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来。

三、板书设计

1.用合并同类项的方法解简单的一元一次方程。

解方程的步骤:

(1)合并同类项;

(2)系数化为1(等式的基本性质2).

2.找等量关系列一元一次方程。

列方程解应用题的步骤:

(1)设未知数;

(2)分析题意找出等量关系;

(3)根据等量关系列方程;

(4)解方程并作答。

教学反思

本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫。教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯。

20 345213
");