初中数学交流课《有理数的乘法》教案及教学反思【精彩4篇】
【导言】此例“初中数学交流课《有理数的乘法》教案及教学反思【精彩4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
七年级数学有理数的乘法教案及教学设计【第一篇】
教学目的:
(一)知识点目标:有理数的乘法运算律。
(二)能力训练目标:
1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2.能运用乘法运算律简化计算。
(三)情感与价值观要求:
1.在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2.在讨论的过程中,使学生感受集体的力量,培养团队意识。
教学重点:
乘法运算律的运用。
教学难点:
乘法运算律的运用。
教学方法:
探究交流相结合。
创设问题情境,引入新课
[活动1]
问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?
问题2:计算下列各题:
(1)(一7)×8;
(2)8×(一7);
(3)[3×(一4)]×(一5);
(4)3×[(一4)×(一5)];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)
[师](一5)×(3一7)和(一5)×3一5×7的结果相等吗?
(注意:(一5)×(3一7)中的3一7应看作3与(一7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)
讲授新课:
[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:1.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
2.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3.一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。
3.用简便方法计算:
[活动4]
练习(教科书第42页)
课时小结:
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题的第7题(3)、(6)。
活动与探究:
用简便方法计算:
(1)×(一5)十×(一12)十×(十17)
(2)[(4×8)×25一8]×125
七年级数学有理数的乘法教案及教学设计【第二篇】
教学目标
1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2.两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。
3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.
5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6.如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
有理数的乘法(第一课时)
教学目标
1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2.通过有理数的乘法运算,培养学生的运算能力;
3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解。
课堂教学过程设计
一、从学生原有认知结构提出问题
1.计算(-2)+(-2)+(-2).
2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)
4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米。
问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数。
初一数学教案:《有理数的乘法》【第三篇】
教学目标
1、理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2、能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3、三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4、通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5、本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的'方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
a·b=b·a;
(a·b)·c=a·(b·c);
(a+b)·c=a·c+b·c。
(三)教法建议
1、有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2、两数相乘时,确定符号的依据是“同号得正,异号得负”,绝对值相乘也就是小学学过的算术乘法。
3、基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4、几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。
5][、小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6、如果因数是带分数,一般要将它化为假分数,以便于约分。
七年级数学有理数的乘法教案及教学设计【第四篇】
三维目标
一、知识与技能
经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。
二、过程与方法
经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。
三、情感态度与价值观
培养学生积极探索精神,感受数学与实际生活的联系。
教学重、难点与关键
1.重点:应用法则正确地进行有理数乘法运算。
2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。
3.关键:积的符号的确定。
教具准备
投影仪。
四、教学过程
一、引入新课
在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?
五、新授
课本第28页图,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。
下一篇:《日月潭》教案【通用4篇】