初中数学交流课《有理数的乘法》教案及教学反思【汇集4篇】

网友 分享 时间:

【前言导读】此篇优秀教案“初中数学交流课《有理数的乘法》教案及教学反思【汇集4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

有理数的乘法教案【第一篇】

一、 教学内容

人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.

二、学情分析

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。

三、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

四、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、教学手段

制作幻灯片,采用多媒体的现代课堂教学手段。

六、教学方法

注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。

七、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题(出示蜗牛爬的动画幻灯片)

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。

2、 学生探索、归纳法则

学生分为四个小组活动,进行乘法法则的探索。

(1)教师出示蜗牛在数轴上运动的问题,让学生理解。

蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负。

a.+ 2 ×(+3)

+2看作向右运动的速度,×(+3)看作运动3分钟后。

结果:3分钟后的位置

+2 ×(+3)=

b. -2 ×(+3)

-2看作向左运动的速度,×(+3)看作运动3分钟后。

结果:3分钟后的位置

-2 ×(+3)=

c. +2 ×(-3)

+2看作向右运动的速度,×(-3)看作运动3分钟前。

结果:3分钟前的位置

+2 ×(-3)=

d. (-2) ×(-3)

-2看作向左运动的速度,×(-3)看作运动3分钟前。

结果:3分钟前的位置

(-2) ×(-3)=

e.被乘数是零或乘数是零,结果是仍在原处。

思考:积的符号与两个因数的'符号有什么关系?

积的绝对值与两个因数的绝对值又有什么样的关系?

(2)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

b.积的绝对值等于 。

c.任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。(出示幻灯片)

3、 运用法则计算,巩固法则。

例1计算:

(1) (-5) ×(-3); (2) (-7)×4; (3) (-3)×9; (4)(-3) ×(- )

引导学生观察、分析例1中(4)小题两因数的关系,得出:

有理数中仍然有:乘积是1的两个数互为倒数。

例2. 见课本p30页

4、 分层练习,巩固提高。

巩固练习

(1)确定下列两个有理数积的符号:

(2)计算(口答):

① ② ③ ④

⑤ ⑥ ⑦ ⑧

(3)。判断下列方程的解是正数、负数还是0。

(1) 4x= -16 (2)-3x=18

(3)-9x=-36 (4)-5x=0

5、小结

(1)有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

(2)如何进行两个有理数的乘法运算:

先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

6.作业布置

课本p30页练习1,2,3.

课后反思:

本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用。对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法。

教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力。

有理数的乘法教案【第二篇】

一、知识与能力

掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

二、过程与方法

经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

三、情感、态度、价值观

培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的'是学以致用,从而培养学生的主动性、积极性

四、教学重难点

一、重点:熟练进行有理数的乘除运算

二、难点:正确进行有理数的乘除运算

预习导学

通过看课本§的内容,归纳有理数的乘法法则以及乘法运算律

五、教学过程

一、创设情景,谈话导入

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

二、精讲点拨质疑问难

根据预习内容,同学们回答以下问题:

1、有理数的乘法法则:

(1)同号两数相乘___________________________________

(2)异号两数相乘_____________________________________

(3)0与任何自然数相乘,得____

2、有理数的乘法运算律:

(1)乘法交换律:ab=_________

(2)乘法结合律:(ab)c=_______

(3)乘法分配律:(a+b)c=________

3、有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________

比较有理数的乘法,除法法则,发现_________可能转化为__________

三、课堂活动强化训练

某公司去年1~3月份平均每月亏损万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利万元,11~12月份平均每月亏损万元,这个公司去年总的盈亏情况如何?

注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结。

四、延伸拓展,巩固内化

例2.(1)若ab=1,则a、b的关系为()

(2)下列说法中正确的个数为( )

0除以任何数都得0

②如果=-

1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身

A 1个B 2个C 3个D 4个

(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )

A两数相等

B两数互为相反数

C两数互为倒数

D两数相等或互为相反数

有理数的乘法教案【第三篇】

学习目标:

1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算

2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。

3、培养语言表达能力。调动学习积极性,培养学习数学的兴趣。

学习重点:

有理数乘法

学习难点:

法则推导

教学方法:

引导、探究、归纳与练习相结合

教学过程

一、学前准备

计算:

(1)(一2)十(一2)

(2)(一2)十(一2)十(一2)

(3)(一2)十(一2)十(一2)十(一2)

(4)(一2)十(一2)十(一2)十(一2)十(一2)

猜想下列各式的值:

(一2)×2(一2)×3

(一2)×4(一2)×5

二、探究新知

1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空。

2、观察以上各式,结合对问题的研究,请同学们回答:

(1)正数乘以正数积为__________数,(2)正数乘以负数积为__________数,

(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

提出问题:一个数和零相乘如何解释呢?

《有理数的乘法》同步练习含解析

1、若有理数a,b满足a+b<0,ab<0,则()

A、a,b都是正数

B、a,b都是负数

C、a,b中一个正数,一个负数,且正数的。绝对值大于负数的绝对值

D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值

5、若a+b<0,ab<0,则()

A、a>0,b>0

B、a<0,b<0

C、a,b两数一正一负,且正数的绝对值大于负数的绝对值

D、a,b两数一正一负,且负数的绝对值大于正数的绝对值于0

《有理数的乘法运算律》课时练习含答案

2、大于—3且小于4的所有整数的积为()

A、—12 B、12 C、0 D、—144

2、×(—23)—×77=×(—23—77)=×(—100)=—,这个运算运用了()

A、加法结合律

B、乘法结合律

C、分配律

D、分配律的逆用

3、下列运算过程有错误的个数是()

①×2=3—4×2

②—4×(—7)×(—125)=—(4×125×7)

③9×15=×15=150—

④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50

A、1 B、2 C、3 D、4

4、绝对值不大于2 015的所有整数的积是。

5、在—6,—5,—1,3,4,7中任取三个数相乘,所得的积最小是,最大是。

6、计算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的结果为。

7、计算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的结果是。

有理数的乘法教案【第四篇】

教学目的:

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

教学分析:

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的`跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向东为正,向西为负

情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的西方6米处

发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6

概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

3、设疑:

如果我们把中的一个因数2换成它的相

反数-2时,所得的积又会有什么变化?

当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

例:计算:

(1)(2)

三、巩固训练:

、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

、2,3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

17 570801
");