初中数学交流课《有理数的乘法》教案及教学反思优质4篇
【路引】由阿拉题库网美丽的网友为您整理分享的“初中数学交流课《有理数的乘法》教案及教学反思优质4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
七年级数学有理数的乘法教案及教学设计【第一篇】
教学目的:
(一)知识点目标:有理数的乘法运算律。
(二)能力训练目标:
1.经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。
2.能运用乘法运算律简化计算。
(三)情感与价值观要求:
1.在共同探索、共同发现、共同交流的过程中分享成功的喜悦。
2.在讨论的过程中,使学生感受集体的力量,培养团队意识。
教学重点:
乘法运算律的运用。
教学难点:
乘法运算律的运用。
教学方法:
探究交流相结合。
创设问题情境,引入新课
[活动1]
问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?
问题2:计算下列各题:
(1)(一7)×8;
(2)8×(一7);
(3)[3×(一4)]×(一5);
(4)3×[(一4)×(一5)];
[师生]由学生自主探索,教师可参与到学生的讨论中。
像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)
[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)
[师](一5)×(3一7)和(一5)×3一5×7的结果相等吗?
(注意:(一5)×(3一7)中的3一7应看作3与(一7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)
讲授新课:
[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。
应得出:1.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。
2.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
3.一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。
[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。
3.用简便方法计算:
[活动4]
练习(教科书第42页)
课时小结:
这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。
课后作业:课本习题的第7题(3)、(6)。
活动与探究:
用简便方法计算:
(1)×(一5)十×(一12)十×(十17)
(2)[(4×8)×25一8]×125
有理数的减法教案【第二篇】
有理数的减法
题 目
有理数的减法
课时1
学校教者
年级七年
学科数学
设计来源
自我设计
教学时间
教学目标
1、理解有理数减法法则, 能熟练进行减法运算
2、会将减法转化为加法,进行加减混合运算,体会化归思想
重点
有理数的减法法则的理解,将有理数减法运算转化为加法运算
难点
有理数的减法法则的理解,将有理数减法运算转化为加法运算
教学方法
讲授教学过程
一、情境引入:
1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?
探索新知:
(一) 有理数的减法法则的探索
1.我们不妨看一个简单的问题: (-8)-(-3)=?
也就是求一个数“?”,使 (?)+(-3)=-8
根据有理数加法运算,有 (-5)+(-3)= -8
所以 (-8)-(-3)= -5 ①
2.这样做减法太繁了,让我们再想一想有其他方法吗?
试一试
做一个填空:(-8)+( )= -5
容易得到 (-8)+(+3 )= -5 ②
思考: 比较 ①、②两式,我们有什么发现吗?
3、验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+ ;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+ ;
(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?
(-3)-5=(-3)+ ;
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算?
3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:
减去一个数,等于加上这个数的相反数。
字母表示:
由此可见,有理数的减法运算可以转化为加法运算。
思考:两个有理数相减,差一定比被减数小吗?
说明:(1)被减数可以小于减数。如: 1-5 ;
(2)差可以大于被减数,如:(+3)–(-2) ;
(3)有理数相减,差仍为有理数;
(4)大数减去小数,差为正数;小数减大数,差为负数;
(三 )问题:
问题1. 计算:
①15-(-7) ②(-)-(-) ③ 0-(-22)
④(+2)-(+8) ⑤(-4)-16 ⑥
问题2.(1)-比少多少??
(2)从-1中减去-与-的和,差是多少?
(四)课堂反馈:
1、求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。
归纳总结:
1.有理数减法法则2.有理数减法运算实质是一个转化过程
达标测评
知识巩固
1.下列说法中正确的是( )
A减去一个数,等于加上这个数。 B零减去一个数,仍得这个数
C两个相反数相减是零。 D在有理数减法中,被减数不一定比减数或差大
2.下列说法中正确的是( )
A两数之差一定小于被减数
B减去一个负数,差一定大于被减数
C减去一个正数,差不一定小于被减数
D零减去任何数,差都是负数
3.若两个数的差不为0的是正数,则一定是( )
A被减数与减数均为正数,且被减数大于减数
B被减数与减数均为负数,且减数的绝对值大
C被减数为正数,减数为负数
4.下列计算中正确的是( )
A(—3)-(—3)= —6 B 0-(—5)=5
C(—10)-(+7)= —3 D | 6-4 |= —(6-4)
5.(1)(—2)+________=5; (—5)-________=2
(2)0-4-(—5)-(—6)=___________
(3)月球表面的温度中午是1010C,半夜是-13oC,则中午的温度比半夜高____
(4)已知一个数加—和为—,则这个数为_____________
(5)已知b < 0>,则a,a-b,a+b从大到小排列________________
(6)0减去a的相反数的差为_______________
(7)已知| a |=3,| b |=4,且a,则a-b的值为_________
6.计算
(1) (—2)-(—5) (2)(—)-(+6)
(3)-(—) (4)(—)-(+)
(5)(—6)-(—6) (6)(3-9)-(21-3)
(7)| —1-(—2)| -(—1)
(8)(—3)-(—1)-(—)-(—2)
7.已知a=8,b=-5,c=-3,求下列各式的值:
(1)a-b-c;(2)a-(c+b)
8.若a<0>0, 则a, a+b, a-b, b中最大的是( )
A. a B. a+b C. a-b D. b
9.请你编写符合算式(-20)-8的实际生活问题。
教与学反思
你有什么收获?
教学反思:
1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系。
2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力。另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性。在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。
有理数的乘法教案【第三篇】
一、 教学内容
人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.
二、学情分析
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学手段
制作幻灯片,采用多媒体的现代课堂教学手段。
六、教学方法
注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。
七、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题(出示蜗牛爬的动画幻灯片)
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。
2、 学生探索、归纳法则
学生分为四个小组活动,进行乘法法则的探索。
(1)教师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负。
a.+ 2 ×(+3)
+2看作向右运动的速度,×(+3)看作运动3分钟后。
结果:3分钟后的位置
+2 ×(+3)=
b. -2 ×(+3)
-2看作向左运动的速度,×(+3)看作运动3分钟后。
结果:3分钟后的位置
-2 ×(+3)=
c. +2 ×(-3)
+2看作向右运动的速度,×(-3)看作运动3分钟前。
结果:3分钟前的位置
+2 ×(-3)=
d. (-2) ×(-3)
-2看作向左运动的速度,×(-3)看作运动3分钟前。
结果:3分钟前的位置
(-2) ×(-3)=
e.被乘数是零或乘数是零,结果是仍在原处。
思考:积的符号与两个因数的'符号有什么关系?
积的绝对值与两个因数的绝对值又有什么样的关系?
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。(出示幻灯片)
3、 运用法则计算,巩固法则。
例1计算:
(1) (-5) ×(-3); (2) (-7)×4; (3) (-3)×9; (4)(-3) ×(- )
引导学生观察、分析例1中(4)小题两因数的关系,得出:
有理数中仍然有:乘积是1的两个数互为倒数。
例2. 见课本p30页
4、 分层练习,巩固提高。
巩固练习
(1)确定下列两个有理数积的符号:
(2)计算(口答):
① ② ③ ④
⑤ ⑥ ⑦ ⑧
(3)。判断下列方程的解是正数、负数还是0。
(1) 4x= -16 (2)-3x=18
(3)-9x=-36 (4)-5x=0
5、小结
(1)有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。
(2)如何进行两个有理数的乘法运算:
先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。
6.作业布置
课本p30页练习1,2,3.
课后反思:
本节内容是学生在小学学习过的乘法以及初中学习了有理数的加法,减法及混合运算的基础上,进一步学习的基本运算,它既是对前面知识的延续,又是以后学习有理数除法等数学知识的铺垫,起了承上启下的作用。对经历有理数乘法法则的探索过程,使学生体验分类讨论的数学思想方法。
教学设计上,强调自主学习,注重交流合作,让学生在自主探索过程中理解和掌握有理数的乘法法则,并获得数学活动的经验,提高学习能力。
有理数的减法教案【第四篇】
教学目标
1、 会把有理数的加减法混合运算统一为加法运算;
2、 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;
3.进一步感悟“转化”的思想
教学重点
把有理数的加减法混合运算统一为加法运算
教学难点
省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变
教学过程
根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算
1、完成下列计算:
(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4)
归纳: 根据有理数的减法法则,有理数的`加减混合运算可以统一为 运算;
(2)式统一成加法是________________________________;
省略负数前面的加号和( )后的形式是______________________;
读作____________________ 或 _______________________
展示交流
1、把下列运算统一成加法运算:
(1)(-12)+(-5)-(-8)-(+9)=_____________________________;
(2)(-9)-(+5)-(-15)-(+9)=_____________________________;
(3) 2+5-8=_________________________________;
(4) 14-(-12)+(-25)-17=_____________________________________
2、 将下列有理数加法运算中,加号省略:
(1)12+(-8)=________________;
(2)(-12)+(-8)=_________________________________;
(3)(-9)+(-5)+(+15)+(-20)= ____________________________
3、将下列运算先统一成加法,再省略加号:
(-15)-(+63)-(-35)-(+24)+(-12)=_________________________
=_________________________
4、 仿照本P37例6,完成下列计算:
(1) -4-5+6 ; (2) -23+41-24+12-46
5、 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了 km,此时他在住地的什么方向?与驻地的距离是多少?
盘点收获
个案补充
课堂反馈
1.计算:
2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?
迁移创新
一架飞机做特技表演,它起飞后的高度变化情况为:上升千米,下降千米,上升千米,下降千米,求此时飞机比起飞点高了多少千米?
课堂作业
本P39 习题2 。5第6题(1)、 (3)、(5), 第7题 。
上一篇:地理教学反思精彩4篇
下一篇:地理教学反思精编3篇