《反比例》数学教案精选4篇

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“《反比例》数学教案精选4篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

小学六年级下册数学《反比例》教案【第一篇】

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究

(一)教学例1

1.出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3.小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

(二)教学例2

1.出示例2,根据题意,学生口述填表。

2.教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1.请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2.教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书: xy =k(一定)

三、课堂小结

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习

完成教材43页做一做

五、课后作业

练习七6、7、8、9题。

六、板书设计

成反比例的量 xy=k(一定)

每小时加工数×加工时间=零件总数(一定)

每本页数×装订本数=纸的总页数(一定)

《反比例》数学教案【第二篇】

从容说课

我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了

用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想

此外,解决实际问题时。还要引导学生体会知识之间的联系以及知识的综合运用

教学目标

(一)教学知识点

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程

2、体会数学与现实生活的紧密联系,增强应用意识。提高运用代数方法解决问题的能力

(二)能力训练要求

通过对反比例函数的应用,培养学生解决问题的能力

(三)情感与价值观要求

经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题。发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用

教学重点

用反比例函数的知识解决实际问题

教学难点

如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题

教学方法

教师引导学生探索法

教学过程

Ⅰ。创设问题情境,引入新课

[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用

[师]很好;学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学

Ⅱ。 新课讲解

某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地。为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么

(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?

(2)当木板画积为 m2时。压强是多少?

(3)如果要求压强不超过6000 Pa,木板面积至少要多大?

(4)在直角坐标系中,作出相应的函数图象

(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流

[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题

请大家互相交流后回答

[生](1)由p=得p=

p是S的反比例函数,因为给定一个S的值。对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数

(2)当S= m2时, p==3000(Pa)

当木板面积为 时,压强是3000Pa.

(3)当p=6000 Pa时,

S==(m2)

如果要求压强不超过6000 Pa,木板面积至少要 m2

(4)图象如下:

(5)(2)是已知图象上某点的横坐标为,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围

[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?

[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在

[师]很好,那么在(1)中是不是应该有条件限制呢?

[生]是,应为p= (S>0)。

做一做

1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;

(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?

(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?

[师]从图形上来看,I和R之间可能是反比例函数关系。电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值。

[生]解:(1)由题意设函数表达式为I=

∵A(9,4)在图象上,

∴U=IR=36

∴表达式为I=

蓄电池的电压是36伏

(2)表格中从左到右依次是:12,9,,6,,

电源不超过 10 A,即I最大为 10 A,代入关系式中得R=,为最小电阻,所以用电器的可变电阻应控制在R≥这个范围内

2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)

(1)分别写出这两个函数的表达式:

(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流

[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的

坐标即求y=k1x与y=的交点

[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上

∴k1=2,2=

∴k1=2,k2=6

∴表达式分别为y=2x,y=

∴x2=3

∴x=±

当x= ?时,y= ?2

∴B(?,?2)

Ⅲ。课堂练习

1、某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空

(1)蓄水池的容积是多少?

(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?

(3)写出t与Q之间的关系式;

(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?

(5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?

解:(1)8×6=48(m3)

所以蓄水池的容积是 48 m3

(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少。

(3)t与Q之间的关系式为t=

(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=(m3)

(5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空。

Ⅳ、课时小结

节课我们学习了反比例函数的应用。具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题。

Ⅴ课后作业

习题

板书设计

§ 反比例函数的应用

一、1.例题讲解

2、做一做

二、课堂练习

三、课时小节

四、课后作业(习题)

《反比例》数学教案【第三篇】

教学目标

1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律.

2.使学生能正确判断正、反比例.

教学重点

正、反比例的联系和区别.

教学难点

能正确判断正、反比例.

教学过程()

一、复习准备

判断下面每题中两种量成正比例还是成反比例.

1.单价一定,数量和总价.

2.路程一定,速度和时间.

3.正方形的边长和它的面积.

4.时间一定,工效和工作总量.

二、新授教学

(一)出示课题

教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点.

(二)教学例7(课件演示:正反比例的比较)

例7.观察下面的两个表,根据表分别填空.

表1

路程(千米)

5

10

25

50

100

时间(时)

1

2

5

10

20

在表1中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和路程成( )关系.

表2

速度(千米/时)

100

50

20

10

5

时间(时)

1

2

5

10

20

在表2中相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,时间和速度成( )关系.

1.分组讨论、交流.

2.引导学生讨论回答

(1)从表1中,怎样知道速度是一定的?根据什么判断速度和时间成正比例?

(2)从表2中,怎样知道路程是一定的?根据什么判断速度和时间成反比例?

3.引导学生总结路程、速度、时间三个量中每两个量之间的关系.

速度×时间=路程

4.练习:判断下面两个量成什么比例.

(1)当速度一定时,路程和时间.

(2)当路程一定时,速度和时间.

(3)当时间一定时,路程和速度.

(三)比较正比例和反比例的关系.(继续演示课件:正反比例的比较)

讨论填表:正、反比例异同点

相同点:都有两种相关联的量,一种量随着另一种量变化.

不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.相对应的每两个数的比值(商)是一定的.反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的.

三、课堂小结

今天我们学习了哪些知识?你还有什么问题吗?

四、巩固练习

(一)判断单价、数量和总价中一种量一定,另外两种量成什么比例.为什么?

1.单价一定,数量和总价成( ).

2.总价一定,单价和数量成( ).

3.数量一定,总价和单价成( ).

(二)从汽车每次运货吨数、运货的次数和运货的总吨数这三种量中,你能找出哪几种比例关系?

五、课后作业

一个单位食堂每天用大米的数量、用的天数和大米的总量如下表.

表1

在表1中,相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,大米的总量和用的天数成( )关系.

表2

在表2中,相关联的量是( )和( ),( )随着( )变化,( )是一定的.因此,每天用的数量和用的天数成( )关系.

六、板书设计

正比例和反比例的比较

相同点

1.都有两种相关联的量.

2.一种量随着另一种量变化.

不同点

1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.

2.相对应的每两个数的比值(商)是一定的.

1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).

2.相对应的每两个数的积是一定的.

探究活动

灵活判断

活动目的

1.理解正反比例的意义.

2.能根据正反比例的意义,正确判断两种量是否成比例,成什么比例.

活动过程

1.教师出示思考题目:

(1)正方形的边长和面积是否成比例?

(2)圆的面积和半径是否成比例?

2.学生分小组讨论.

3.学生分小组汇报讨论结果.

4.师生共同小结并总结规律.

《反比例》数学教案【第四篇】

教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。

教学过程:

一、引入

教师:前面我们学习了正比例和反比例的意义.上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

二、课堂练习

1.分析、研究第3题。

让学生先说出长方形的长、宽、面积三个量中.其中一个量与另外两个量的关系,教师板书出来:长宽=面积

= 长 =宽

提问:

当面积一定时,长和宽成什么比例关系?

当长一定时,面积和宽成什么比例关系?

当宽一定时,面积和长成什么比例关系?

教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。

2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。

运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系

3.第5题,让学生独立做,教师巡视,注意个别辅导。

4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。

5.第7题,学生独立解答后,选一题说说是怎样解的。

6.学有余力的学生做第8题。

20 302281
");