《解决问题的策略》教案(精编5篇)
【导言】此例“《解决问题的策略》教案(精编5篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
《解决问题的策略》教案1
第八 单元分析
一
单元教材分析
苏教版数学教材从四年级(上册)起,每册都编写一个“解决问题的策略”的单元。“形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神”是《数学课程标准(实验稿)》确定的课程目标之一,教材编写“解决问题的策略”这样的单元,就是为了贯彻落实课程目标。解决问题的策略是在长期数学教学中不断地培养的,是通过各个领域内容的教学逐渐形成的,单独编写“解决问题的策略”这个单元,能加强策略的形成和对策略的体验。
在数学教学中,解决问题活动的价值不局限于获得具体问题的结论和答案,它的意义更在于使学生学会解决问题,体会每个人都应当有自己对问题的理解,并由此形成自己解决问题的基本策略,还体会解决问题可以有不同的策略。数学教学在这种鼓励个性发展的理念下进行,学生的创新精神才可能真正得到培养。
本单元以有条理地整理信息,发现数量之间的联系作为策略教学的切入口。发现和利用数量关系是解决实际问题的途径,通过整理信息明确和把握数量关系,既是可操作的方法,也是解决问题的策略。让学生学会整理信息的常用方法,体会它的作用与意义,从而内化成自己的策略是教材的编写思想。
二
单元目标要求
教学用列表的策略解决实际问题。
三
单元设计意图
本单元的教学内容分成两部分,前一部分是解决两步计算的问题,后一部分是解决三步计算的问题。
1 让学生把信息填入表格,学习整理信息的方法,体会对解决问题的作用。
本单元选择表格作为整理信息的工具,有两个原因: 一是学生对表格比较熟悉,他们从一年级学习数学起就经常接触表格,进行过许多填表活动。因此,选择填表整理比较贴近学生实际,宜于学习。二是表格条理清楚,数学化程度比较高。填入表格里的都是经过筛选后的重要信息和有用数据,实际问题里的许多情节性内容都被过滤掉了。因此,填表整理能帮助学生把握住实际问题里的数学内容。
教材充分注意到学生初步学习利用表格整理信息,在编写上尽量循序渐进,逐渐提高。
(1) 把已知条件和要求的问题全部填进表里。
(2) 根据要解决的问题,选择相关的条件填入表格。
教材在编写上有以下特点。
第一, 选择相关的条件填入表格。
第二,利用表格、紧扣问题,设计解题步骤。
2 让学生在解决实际问题的过程中,逐渐养成整理信息的习惯。
整理信息是解决问题的策略,整理的方法和形式是多样的,列表整理只是其中的一种。教材选择列表整理是它易于操作,适宜学生运用。学生对填表的态度有积极与消极之分,积极的态度表现为对填表有热情,体验到填表整理对形成解题思路的作用,具有自觉进行整理的习惯。消极的态度则把填表看做负担,理解为教材和老师的规定,是被迫进行的。教材力求让学生体会到整理信息的意义,并转化成内在的需要,真正形成解决问题的策略。
(1) 从有形地整理到无形地整理。
(2) 解决新颖的问题。
问题的新颖性与策略的形成正相关。策略往往在解决新颖的问题时体现其价值,并在创造性地解决问题的活动中得到锻炼和发展。如果解决实际问题的练习总是局限在已经教过的、已经认识的那些问题上,那么只是进行技能操练,没有培养策略。为此,教材在教学归一问题的基础上带出归总问题,在教学比较容易的三步计算问题时安排少量稍难些的三步计算问题。这些归总问题、稍难些的三步计算问题都不编排例题,在“想想做做”里让学生应用策略独立解答。
发展解决问题的策略是新课程对数学教学提出的新课题,让学生主动解决一些新颖的问题是数学教学的一项突破。为此,教学中应做到两点。
第一,改变例题的教学观念。
第二,教学新颖的问题,既要放手让学生独立解答,又要给予必要的指导。第一次出现归总问题和稍难些的三步计算问题,教材都为学生设计了可以填写的表格。一方面引导学生应用已经学到的思想方法,继续培养整理信息的能力。另一方面适当降低整理信息的操作难度,学生有现成的表格可填。教学要注意适度地“放”和适当地“扶”。 新课标第一网
最后还要指出一点,列表整理是解决实际问题的基本策略,解决每一个问题都从整理题目里的条件和问题入手。本单元教学列表整理以后,不能说所有的问题学生都能解答了。应以解答归一问题、归总问题、较容易的三步计算问题为主,一些稍难的实际问题以后会安排教学。
四
单元目标达成分析
课题:教科书p65-67 解决问题的策略 第 1课时
时间: 年 月 日
教学目标:1、学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关数据的作用,学会用列表的方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻求解决问题的有效方法。 2、学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。学情分析: 重点与难点:重点:体会策略的价值,主动运用策略解决问题难点:灵活解决问题的能力课前准备
板块
教师活动
学生活动
教学目标及达成情况
一、揭示课题 二、教学例题板书课题:解决问题的策略提问:什么叫策略?你在哪些地方见到用过?能举例说明吗? 出示情境图图中直接告诉我们哪些数学信息?在已知条件比较多、关系比较复杂的情况下,为了能够清楚的看出已知条件和已知条件之间以及已知条件和问题之间的关系,我们可以采用列表整理条件和问题的策略。(板书:列表整理条件和问题)能用列表的方法整理这些条件和问题吗?在列表时,为什么先要把小明的情况填进去?每人购买的本数和所用的钱数填在同一行,有什么好处?填表和摘录条件比较,哪个方便些?列表之后,干什么呢?就是分析数量关系(板书:分析数量关系)要求小华用去多少元,可以怎样想?会列式吗? 根据已有经验交流,互相补充互相说日常所见 集体交流 图中有三个小朋友,小华,小明和小军。小明买了3本笔记本,用去18元,小华买了相同的笔记本5本 根据学生的实际情况进行指导结合学生列表整理的情况,展示列表过程独立活动 小组交流 三、组织练习四、课堂作业总结策略 1、 从买3本用18元想到先求一本用多少元,是从条件还是问题想起的?(板书:从条件想起 2、要求买5本用多少元想到先要求一本的价钱,这是从哪里想起的?(板书:从问题想起)提问算式每一步的意义小军用42元买笔记本,他买了多少本?请每个人独立列表整理怎样分析数量关系?指名板演算式 共同检查在分析数量关系时,你运用了什么策略?列表整理数据你能将这两个表格合并起来吗?出示表格(略)
小明
3本
18元
小华
5本
( )元
小军
( )本
42元
出示 3本 18元 5本 ( )元 ( )本 42元 能够将表格中的内容填在括号里吗?表中的箭头什么意思?观察这个图,你发现了什么?独立填写括号互相交流箭头表示本数和用的钱数是对应的(本数越多,用的钱越多,但不管怎么变,每本的价钱不变……) “想想做做”第1、2题 “想想做做”第3、4题 五、全课总结 (先要根据小明的算出一本的钱)方便分析 比较 填表更清晰看条件 问题…… 自主探索 独立列式解答交流讨论 1、 根据买3本用18元,想一本用多少元(从条件想起) 2、 要求买5本用多少元,先要求一本的价钱(从问题想起)互相交流选择信息 独立填表汇报交流 同桌互相交流 列式解答各自检查订正 说明:1、重点突出板块设计; 2、备课时重点突出教学设计(包括教师与学生活动设计) 3、教学反思在“活动目标及达成情况”栏填写。 课题:教科书p68-69 第 2课时
时间: 年 月 日
教学目标:1、学生在解决实际问题的过程中,进一步学会用列表的方法整理稍复杂的信息,并运用从问题想起的策略分析数量关系,寻找解决问题的有效方法。2、学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。 学情分析: 重点与难点:用从问题想起策略分析数量关系课前准备
板块
教师活动
学生活动
教学目标及达成情况
一、揭示课题二、教学例题一台织布机3小时织布84米,如果织8小时可以织布多少米? 要求:先用列表的方法整理信息,再解答。 指名说解题思路,并说说用列表的好处独立列表解答,交流思路上节课我们学习了用列表和画图的方法整理信息,运用这种策略,我们可以解决更多的问题。今天我们继续学习解决问题的策略(板书课题:解决问题的策略)出示例题中的已知条件小芳家栽了3行桃树、8行苹果树和4行梨树。桃树每行7棵,苹果树每行6棵,梨树每行5棵看了这些信息,你有什么感受?出示问题:桃树和梨树一共有多少棵?如果用列表的方法整理信息,解决这个问题,有必要把所有的信息都整理进去吗?一台3小时84米一台8小时?米认真读题 仔细分析信息比较多展示学生所列表格不需要都整理,只要用到“与桃树、梨树有关的信息”独立列表整理信息
桃 树
3 行
每行7棵
梨 树4 行
每行5棵三、组织练习 四、课堂总结五、布置作业你能根据问题列表整理信息?(巡视 个别辅导)分析数量关系,你打算从哪里想起?怎样想?小组讨论 交流 可能有两种思路(分别从问题、条件想起)请列式解答巡视 适当进行指导每一步求的是什么?独立列式解答 交流 说意思3×7=21(棵) 4×5=20(棵)21+20=41(棵) 试一试出示问题:苹果树比桃树多多少棵?要求:列表整理,分析数量关系,解答展示学生表格和答案
桃 树
3 行每行7棵
苹 果 树
8 行每行6棵你能根据题目呈现的信息,自己提问题,再设计表格填表并解答吗?选择典型题展示共同交流(让其他学生猜一猜被展示者的分析思路) 比较小结1、用列表的方法,来算算,用这些栅栏还可以围成长是几米的长方形? 长(米)8765宽(米)1234面积(平方米)8141820想一想,如何围面积最大?独立列表整理,互相交流分析数量关系的方法,独立列式解答检查订正3×7=21(棵) 8×6=48(棵)48-21=27(棵)独立提问题,设计表格,填表列式解答 互相交流引导观察:刚才我们用18根1米长的栅栏围成一个长方形,可以围出很多种情况。指出:在确定长方形周长后,长和宽越接近,面积就越大。 2、“想想做做”第1、3题说明:1、重点突出板块设计; 2、备课时重点突出教学设计(包括教师与学生活动设计) 3、教学反思在“活动目标及达成情况”栏填写。
《解决问题的策略》教案2
生活里的事情从发生到结束总是有过程的,事情发生的过程或是在数量的多少上发生变化,或是在方向、路线、时间等方面发生变化,或是在其他方面发生变化。研究这些事情里的数学问题经常有两条线索: 一条是从事情的起始状态,根据将要发生的变化,推断结束时的状态;另一条是从事情的结束状态,联系已经发生的变化,追溯起始状态。学生比较习惯用()前一条线索分析数量关系和解决实际问题,但是,有些问题用后一种思路去解决是比较方便的。本单元教学逆推策略,通俗地讲就是“倒过去想”,即从事情的结果倒过去想它在开始的时候是怎样的。
1 在简单的事情中初步体会逆推是一种策略。
例1用图画呈现了甲、乙两杯果汁共400毫升,甲杯倒入乙杯40毫升,两杯里的果汁同样多。这是一件事情的开始、变化、结果三个时段的主要状况。甲杯里的部分果汁倒入乙杯后,两杯果汁才同样多,如果把甲杯倒入乙杯的那些果汁仍然倒回甲杯,就恢复了两杯果汁的原状。这是人们的经验,也是学生能够想到的办法,教材用图画展示了这样的思考和问题的答案。
这道例题的教学重点在体验“逆推”是解决问题的策略。为此,还安排了两项活动。一是在表格里先填写甲杯和乙杯现在各有果汁200毫升,再填写它们原来有多少毫升果汁,通过填表反思“倒回去”的过程。利用加法或减法计算倒入和倒出的问题,能进一步理解“倒回去”的意思,体会它对解决问题的作用。二是组织学生说说解决这个问题的策略,先回顾例题是怎样的实际问题,它是怎样解决的;再交流解决问题的方法有什么特点,以及对这种方法的感受。这样,就从解决问题的过程中提炼了思想方法。
2 举一反三,运用逆推策略解决实际问题。
例2中小明的邮票经过两次变化最后还剩52张,问题是他原来有多少张邮票。学生会感到,这题的事情虽然和例1不同,但都要从现在的数量追溯原来的数量。教材通过“你准备用什么策略解决这个问题”引导学生“倒过去想”,即如果跟小华要回30张邮票,那么小明就有52+30=82(张);如果不收集24张邮票,那么小明只有82-24=58(张)。“倒过去想”需要整理事情从开始到结束的变化过程,排出各次变化的次序。还要联系生活经验,思考“倒过去”的方法。如送出的应要回,收集的应去掉。在倒过去想的时候,还要逆着事情变化的顺序进行,先把后发生的变化倒回去,再把先发生的变化倒回去,直至事情的原来情况。这些都落实在说说自己的想法和列式解答之中。教材给出的第二种方法没有完全按照事情发生变化的次序一步步地逆推,而是先分析事情发展过程中的两次变化对小明邮票张数造成的总的影响。由于今年收集的邮票比送给小军的邮票少6张,所以现在的邮票应该比原来少6张。然后逆推: 如果现在的邮票再多6张,就是原来邮票的张数。教学时要提倡第一种方法,因为这种方法比较清楚地体现了逆推的策略,思考和操作比较顺畅,适宜多数学生应用。根据求出的答案,顺推过去,看看剩下的是52张吗?一方面能检验答案是否正确,另一方面是让学生再次体验事情的变化是有次序的。顺着变化一步一步地推,是从开始推向结果;逆着变化一步一步地推,是从结果推向起始。无论顺推还是逆推,有条理的思考是十分重要的。
本单元的例题只是提出现实的情境或问题、引发解题思路,让学生自己列式计算,在解题活动中体验方法,并在练习十六里主动运用逆推策略。练习十六的习题有四个特点: 一是题材宽广。有些联系学生生活中的收集画片、折纸鹤、买东西等活动;有些联系已经学过的方向、路线、确定位置以及同级混合运算的知识;还有一天里的气温变化、银行里存钱和支钱的事情和玩扑克牌游戏等。在各种现实问题中都应用逆推的方法,有利于学生积累“倒过去想”的经验,更好地体会逆推是解决问题的策略。二是把事件发生变化的过程有条理地讲清楚。有些用文字讲述,有些用图画表达,还有表格、图文结合和对话等呈现方式。学生容易整理事情有哪些变化,是怎样变化的,以及变化的次序。不仅理解了题意,更为逆推创造了有利条件。三是各题的逆推步数一般是2~3步,只有少量需要4步逆推的题。如第3题,只要根据方向的变化逆推,即使多1步也不会有困难。四是解题的形式灵活多样。有几题需要列式解答,如第1、7、8、9题;有些可以在方格纸上画一画,如第3题;许多题只要说一说或在方框里填一填,如第2、4、5、6、10题。总之,习题的这些特点,都是为了学生能主动地运用逆推的思想方法去解决问题,不断积累经验,逐步内化体会,逐渐升华成策略。
逆
推是解决问题的一种策略,它还需要其他解决问题的策略相配合,尤其是四年级和五年级(上册)教学的整理条件和问题的策略,能使学生清晰地认识事情的发展线索和各次变化的情况。整理信息的形式应该是灵活多样的,例2中第一种整理信息的方法是从左往右列出了事情从开始到结果的一次次变化,从右往左是解决问题逆推时的一步步思考,这种整理形式在本单元可能更适用。当然,有些题也可以用其他形式整理,如“练一练”和练习十六第1题可以画图整理,第7题可以直接看着三幅图画逆推。
另外,练习十六第9题表格右上方的结单余额280元是4月份在银行里的结单余额,它是3月份的结单余额依次支付电话费52元、收存款300元、支付水费28元、支付电费86元后的结余款。因为4月份三笔支出的合计数比存款数少,所以4月份的结单余额比3月份多。3月份的结单余额可以通过计算280+86+28-300+52得出。
《解决问题的策略》教案3
王大叔想用18根1米长的栅栏围成一个长方形羊圈,他该怎么围呢?
师:这句话为我们提供了什么信息?
生:已知长方形的周长是18米,求这个长方形的长和宽。
师:猜想一下,他会怎么围?
生:用6根栅栏作长,3根栅栏作宽。
生:还可以用8根栅栏作长,1根栅栏作宽。
师:你们是怎么想的?
生:要围成一个长方形,就要知道这个长方形的长和宽各是多少。根据条件,知道长方形的周长是18米,长和宽的和是9米。
师:有没有不同的想法?
生:我是画出来的。用8根栅栏作长,1根栅栏作宽。
师:同学们的想法都有道理。但现在王大叔思考的问题却是怎样围面积最大。你们能帮助他解决这个问题吗?
生:应该选长为8米,宽为1米的长方形。
师:为什么呢?
生:我觉得要使长方形的面积最大,它的长就应该最大。
生:不对。我觉得应该选长为5米、宽为4米的长方形。5×4=20,8×1=8,20比8大。
……
师:到底怎样围面积最大呢?光靠这样简单的猜想和无谓的争议是不行的。你们有没有更好的解决办法?
生:我觉得应该把周长为18米的各种情况的长方形都算一算,就知道哪种围法面积最大了。
师:前面我们学过用列表的方法整理数据,现在就请大家用列表的方法把各种情况整理一下,再算一算。
(学生列表整理,计算汇报。教师把相应的数据填入表中。)
生:我们发现长5米、宽4米的长方形面积最大。
师:刚才大家用列表整理数据的办法验证了猜想。有的同学猜想正确,有的猜想错了。但这都不重要,关键是我们要通过对这个问题的探究得到一些启发。现在大家再次观察表格,你们有什么新的发现?在小组内相互交流。
生:我知道了周长相等的长方形,面积不一定相同。
生:我觉得长方形的长和宽越接近时面积越大。
生:我发现长方形的长越大,宽越小,面积就越小。
师:这是为什么呢?请同学们想一想,这些长方形分别是什么样的?你有什么感悟?
生:当长方形的长越大,宽越小时,围成的长方形就越扁,它的面积就越小。如果长为9米,宽为0米,这个长方形的面积就为零了。
反 思:
1、紧扣“数学思维发展过程”的学习活动核心――优化策略
《数学课程标准》提出,无论是什么样的解决问题策略的产生,都必须以“观察、思考、猜测、交流、推理”等富有思维成分的活动过程为其载体。本课例中孝师紧紧扣住“数学思维发展过程”这一核心,适时地引领学生不断提升策略选择的思维品质。如出示问题后,教师提出:“猜想一下,他会怎样围呢?引导学生从数学的角度分析问题并形成策略。当学生对各种围法进行争议时,老师提出:”光靠这样猜想、争议可不行,你们有没有更好的解决办法?”学生另辟蹊径,进行策略改向。在学生以为顺利解决问题后教师又提出:“可能有的同学猜想正确,有的猜想错误,但这些都不重要,关键是我们要通过对这个问题的探究得到一些启发。”引导学生开展交流与评价,进行策略反思。这样,教师一步步地引导学生用数学的眼光提出问题、理解问题和解决问题,从而发展学生思维,达到优化策略的目标。
2、尊重学习个性,彰显创新精神――发展策略
列表收集整理信息,是本课例要求学生掌握的一个基本策略,也是本课的重点。但教师在教学活动中充分尊重学生的个性,基于此又不局限于此,让学生个性在体验不同的策略过程中得到张扬,从而激起创新的火花。比如,教师在学生提出不同的围法后让学生大胆用直觉“猜测一下,哪一种围法面积最大?”再如,学生通过列表验证了猜测,解决问题,老师却未停留在问题解决的结果上,而是进一步引导学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?你有什么感悟?”这样的数形结合,进一步激发了学生探究的心理冲突和不满足的欲望,为形成富有理性的数学思考积累了经验。
《解决问题的策略》教案4
本单元教学用枚举的方法解决实际问题。所谓枚举就是一一列举,即把事情发生的各种可能逐个罗列,并用某种形式进行整理,从而得到问题的答案。生活中有许多实际问题,列式计算往往比较困难。如果联系生活经验,用枚举的方法能比较容易地得到解决。因此,枚举是解决问题的常用策略之一。而且在枚举的时候要有序地思考,做到不重复、不遗漏,对发展思维也很有价值。对学生来说,“列举”比“枚举”通俗,易于接受,教材里采用“列举”这种表述是从有利于学习出发的。另外,教材在编排上还有以下的特点。
第一,选择有趣的素材教学解决问题的策略。如用栅栏围羊圈、订阅杂志、掷飞镖、取钱、拼图形、选择路线……这些素材一方面能调动解决问题的积极性,另一方面能激活已有的生活经验和数学活动能力,主动开展列举活动,体会列举是解决问题的有效方法,逐渐掌握这种策略。
第二,由简单到复杂,逐渐增加问题的难度,培养列举的能力,发展列举的技巧。这是充分考虑了策略的形成规律而作出的安排。首先三道例题是递进的,例1是比较简单的问题,涉及的知识比较少,只要根据长方形周长的意义,在周长保持不变的前提下,列举出长、宽的各种可能,而且长、宽的米数都是整数。例2比例1复杂,不仅订阅的杂志有1本、2本、3本三种可能,而且订阅2本还有三种不同的选择,要应用四年级(下册)教学的搭配规律。例3在旅馆住宿开房间,对列举的每种方案都要从“有没有空位”进行甄别,保留没有空的情况。其次,练习也是递进的,即使两次“练一练”与例题比较接近,也不是简单的重复。而练习十一里的题都具有新颖性,大多数是生活里的实际问题,个别是纯数学的问题(如第6题)。只有在例题里学到了列举的方法,体会了列举策略才能独立解决这些题。
第三,重实质、不拘泥于形式。列举作为一种策略,用来解决问题时的表现形式是多样的。实际问题的特点和学生的个性差异,使列举的表现形式是灵活的、可变的。在表格里列举是形式之一,它的好处是有助于思考,能清楚地看到问题的各种答案。三道例题都采用表格列举这种形式,目的是帮助学生有条理地列举,不丢失信息。教材里的少数练习题已经画出了表格,这些题确实需要这样做。其他练习题没有画出表格,学生可以设计表格进行列举,也可以不画表格,用自己喜欢的形式开展列举活动。部分实际问题还可以用画图、连线等形式列举。
1. 引发列举活动,初步体验列举策略。
解决问题的策略表现在解题活动中,是通过解题活动逐渐形成的。例1作为本单元教学的起始,让学生初步体会列举是解决问题的一种有效方法。设计的教学活动线索包括“引发需要——填表列举——反思方法——感悟策略”等几个主要环节。
(1) 利用现实的问题情境引发列举思路。
用18根栅栏围一个长方形羊圈,由于每根栅栏的长都是1米,所以围成的长方形的长与宽都是整米的数。配置的情境图能帮助学生理解虽然栅栏的总数18米(即长方形周长)是确定不变的,但围成的长方形的长、宽的数量是可变的,也就是围法是多样的。然后进一步想到,长方形的宽可以是1米、2米……每一个宽都有相应的长。于是产生通过摆小棒求长的思路,这就是“小兔”的思考,其中的“如果……如果……”是初步的列举。教学这个环节要抓住“有多少种不同围法”,领会这个问题的含义,明白为什么会有不同的围法。在交流中体会各种围法可以按宽的米数从小到大有序地列举出来。
(2) 填表列举,加强数学思维。
学生在摆小棒列举的活动中,会感到这种方法比较麻烦,既费时费力,还得把每种围法及时记录下来,才能知道一共有多少种不同的围法。于是产生优化列举活动的愿望,这些对操作的体验是继续填表列举的思想基础。通过摆小棒,学生清楚地看到长方形的一条长与一条宽的和是周长的一半。教材适时提出“先求出长方形长、宽的和,再列表填一填”的要求,学生能够接受和理解。列出的算式18÷2=9(米)能使填表顺利地进行。
已知了长、宽的和之后,把长从大到小列举比较方便,也体现了列举思路有时是多样的。表格里已经填出的一组数据隐含了填表时的思考——如果长8米,宽就是9-8=1(米)。照样子继续填表就不会有困难了。把每种围法的长、宽都记录在表格里,一共有多少种围法就十分清楚,减轻了记忆的负担,学生会喜欢填表列举这种方法。
从摆小棒列举到填表列举,形象思维少了,推理加强了。尤其是假设了长的米数以后,相应的宽是通过计算得到的。这个环节的教学要处理好摆小棒到填表的过渡,激发并利用学生的优化愿望,既使两次列举衔接起来,又体现后者比前者优越。
(3) 回顾填表过程,反思相关活动,体会列举策略。
例1的教学不能满足于获得问题的答案,还要继续提炼解决问题的策略。教材要求算出围成的每个长方形的面积,并比较它们的长、宽和面积。这些活动都要看着表格进行,使学生进一步熟悉表格里的内容,利用表格里的数据。“有什么发现”的话题是很宽的,给了学生独立思考、发现数学规律的机会。如各种围法的长、宽不同,面积也不同。又如长方形的周长一定时,它的长、宽越接近,面积越大。
在小组里说说解决这个问题的策略,是引导学生回顾解决问题的过程,体会其中的数学思想与方法。这里的回顾先是比较具体的,包括怎样想、怎样算的,采用了什么形式,列表有什么好处,表格是怎样有序地填写的……然后是比较概括的,理解所开展的活动是列举,是解决问题的有效方法。通过这样的回顾初步体验策略,懂得“列举”的含义,并在后面的解决问题时主动应用这种策略。
2. 应用列举策略,主动开展列举活动。
例2继续教学列举策略,一要承前,用好例1的教学成果;二要发展,丰富列举的技巧。教材选择了比例1复杂的问题情境,设计的教学活动也与例1不完全相同。
(1) 理解题意,确定策略。
例2在图画里呈现了三本不同的杂志,在这些杂志中最少订阅1本,最多订阅3本,意味着也可以订阅其中的2本。教材提出:你准备用什么策略来解决“有多少种订阅方法”的问题。回答这个问题既要基于例1中的列举体验,又出于对例2的正确理解。在三本杂志中,可以订阅1本,也可以订阅2本,还可以订阅3本,因而引发按订阅的本数分类列举的策略。先确定解决问题的策略,再开展解题活动,是例2的教学特点,符合策略制约方法、方法体现策略的关系。
(2) 用不同的形式开展列举活动。
在确定了按订阅1本、订阅2本、订阅3本三种情况进行列举的策略以后,学生就会主动开展具体的列举活动。第一种想法是有代表性的,很多学生都会这样思考。其中“只订1本有3种不同的方法”和“订3本只有1种方法”比较容易得到,“如果订2本,有3种不同的方法”要联系四年级(下册)的选配经验才能得到。第二种方法与第一种是一致的,仅在表现形式上采用了画表格。在表格里能清楚地看到只订1本是哪3种不同的方法。尤其是如果订2本,可以通过画“√”找到3种不同的方法。一共有7种不同的方法也很直观。
教材给教学的启示是,要鼓励学生选用适宜自己的形式,独立开展列举活动。画表格列举是一种很好的形式,不是惟一的形式,不必勉强学生都照这样去做。只有在需要的时候,才会体现画表列举的作用。有时只针对列举时的难点,如订阅2本的情况画一张简单的表格,发现这种情况的几种不同订法,也是可以的。
(3) 在反思中积累列举技巧。
例2在最后向学生提出一个问题: 要得到全部答案,列举时要注意什么?交流例2列举活动时的经验和感受,进一步体验策略,发展列举能力。
学生应该有话可说。如列举要有条理、按步骤进行,先考虑只订1本,再依次分别考虑订阅2本、订阅3本的情况。又如列举时可以画表格,也可以不画表格。在有困难的时候,列表能帮助思考。再如订阅2本的情况最复杂,要把3本杂志两两搭配……要鼓励学生把想说的、能说的都说出来,还要引导他们整理、归纳交流的内容,使成功的经验、曲折的教训都成为有益的资源,充实到列举策略里去。
3. 按不同的线索列举,体验策略应用的灵活性。
策略是解决问题的计策、谋略,在具体应用时是灵活而多样的。例3的编写充分体现了这一点。
23人到旅馆住宿,如果只住3人间或者只住2人间,都不能使所有房间都住满,由于有空着的床位,都不是节省的方案。显然,只有3人间和2人间合理地搭配安排,才能做到每个房间都不留空床位。用列举的方法解决这个实际问题,一般有两条思路,可以从住3人间想起,也可以从住2人间想起。教材要求分别按这两条思路列举。
从住3人间想起。如果只住1个3人间,还剩20人,再住10个2人间正好住满,是一种安排。如果住2个3人间,还剩17人,再住9个2人间有空床位,不符合“没有空床位”的要求。教材里写出上面的思考有两个目的,一是把学生引上这样有条理的思路,他们才能接着往下想。二是帮助学生看懂表格里3人间的间数依次填1、2、3……是按3人间间数从小到大地列举;“1”个3人间下面的格子里填“10”,表示还要10个2人间能全部住下,且正好住满;“2”个3人间下面的格子里画横线,表示这个方案不符合要求。还要注意的是,教材要求分组讨论“接下去应该怎样想”,使“兔子”的思路得到延续,为独立填表作充分的准备。
从住2人间想起,先分组讨论“可以怎样列举”,把住3人间的列举迁移过来,然后在表格里进行列举。两条思路列举的结果都是一共有4种不同的安排,验证了答案。如果让学生想想两次列举有什么相同、有什么不同,比比哪种列举比较简便,就能体会策略的具体实施是多样的、可选择的。
4. 解决新颖而有趣的问题,突出策略的应用。
练习十一里都是有趣的问题,能调动解题的积极性。前五道题配合三道例题,第1、2题都要按固定的间隔时间列举,第1题的间隔时间在题目里已经明确,两路车分别是10分钟和15分钟。第2题的间隔时间要从已发铃声的四个时间里发现。这两题在列举之后都还要进行比较,通过列举和比较找到问题的答案,突出了解决问题的主要策略,体现了解决问题的方法不是单一的,而是综合的。第2~5题不规定必须画表列举,学生从自己的需要出发,可以选择画表的形式,也可以不用画表的形式。但是,必须有条理地列举,才能不重复、不遗漏地找到各种可能。
后四道题给学生灵活应用列举策略的空间。第5题把36写成两个素数之和,要抓住素数思考,从小到大依次用2、3、5、7……列举并作出判断。第7题拼长方形,从宽想起比从长想起容易,可以按沿着宽摆1个、2个……去列举。而且,提供的表格有多余的格子,要体会列举到何时为止。第8题可以在图画上列举。如先向东走2格,有1条路线;先向东走1格,有2条不同的路线;不先向东走,有3条路线。合起来一共有6条路线。第9题小明已经赛了4盘,也就是和其他的人各赛了1盘,可以在小明和另外4人之间各连一条线。小华赛了3盘,其中1盘是和小明赛的,另两盘比赛有3种可能:和小海、小力赛的,和小海、小强赛的,和小力、小强赛的。由于小强只赛了1盘,是和小明赛的,所以小华的另两盘只能是和小海、小力赛的。在连出相应的线以后,就能看到小海已经赛了2盘,分别是和小明、小华赛的。
《解决问题的策略》教案5
学习内容:65页例3及相关练习。
学习目标:
1. 进一步熟悉用列举法的策略解决问题,并且做到不遗漏、不重复。
2. 掌握按照一定的顺序进行列举的策略,积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,获得学好数学的信心。
3. 进一步发展学生的思维,培养思维的严密性和条理性。
学习重点:进一步熟悉用列举法的策略解决问题,并且做到不遗漏、不重复。
学习难点:掌握按照一定的顺序进行列举的策略,积累解决问题的经验,增强解决问题的策略意识。
课前导学
一、 学习例3。
⑴读题,理解题意。着重理解每个房间“不留空位”是什么意思。
⑵怎样想才能不遗漏、又不重复?
⑶引导学生用列表的方法,从只住一间3人房想起。
3人间
2人间
⑷如果从只住一间2人间想起,会吗?列表想一想。结果怎样?
2人间
3人间
⑸哪种方法更容易得出结论?为什么?
二、 尝试达标:
1、 有23人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有多少
种不同的安排?
2、 学校组织348个同学去春游,准备租48座和36座的汽车,在不允许有空位
的情况下,应当怎样租车?
课内导学
一、成果展示。
1、组内交流预习情况,再在组内进行相互评价,组长统计学习结果,并搜集自学过程中遇到的问题。
2、全班展示(每组在黑板上展示一道)
二、合作交流
1、探索预习过程中所遇到的问题。
2、老师预设问题:
今天学习解决问题的方法和上节课所学内容有何异同?
这部分解决问题在列举时最好先从何处入手?
三、精讲提升
1、学生交流探索结果,并鼓励学生装质疑争论。让思维得到碰撞。
2、老师巡视、适时指导。
3、交流学习心得。
补充解决问题方法:1、在一一列举的时候,为避免遗漏或重复,可以按照一定的顺序进行思考。 2、列举时的技巧是先考虑数字较大的(放在第一行)。列举时要注意有序列举。
四、达标检测:
1、完成练一练。指名说说自己是怎么想的。
2、学生独立完成66页第4题,66页第6题,67页第7题。指名交流。
3、完成课间作业。
课后导学
一、填空题
1、工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子。可以有( )种不同的取法。
2、36可以写成哪两个素数的和?在括号里填一填。
36=( )+( )=( )+( )=( )+( )=( )+( )
3、甲、乙、丙、丁和小强进行围棋比赛,每两个人之间都比一盘,甲已经比了4盘,乙比了3盘,丙比了1盘,丁比了2盘,小强比了( )盘,还要比( )盘才能结束。
二、解决实际问题
1、有19人到旅馆住宿,住3人间和2人间(每个房间不能有空床位),有多少种不同的安排?
2、营业员要把42个球装在盒子里,一种盒子可以装4个,另一种盒子可以装6个,如果每个盒子都要装满,有多少种不同的装法?
3、五(1)班的张老师带42名同学去公园划船,每条大船限坐4人,每条小船限坐3人。
(1)如果每条船都不能有空位,有多少条不同的租法?(列表说明)
(2)租一条小船5元,租一条大船6元,怎样租船花的钱最少?要多少钱?
一列火车从上海到扬州,中途要经过4个站,这列火车要准备( )种不同的车票。
上一篇:《尊严》教学设计【最新4篇】
下一篇:《大禹治水》教案精编5篇