《正比例》教案(通用4篇)
【前言导读】这篇优秀教案“《正比例》教案(通用4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
《正比例》教案【第一篇】
教学内容:
成正比例的量
教学目标:
1. 使学生理解正比例的意义,会正确判断成正比例的量。
2. 使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。
教学重点:
正比例的意义。
教学难点:
正确判断两个量是否成正比例的关系。
教具准备:
多媒体课件
教学过程:
一、揭示课题
1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?
在教师的指导下,学生会举出一些简单的例子,如
(1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。
(2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。
(3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。
(4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。
2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量
二、探索新知
1. 教学例1
(1)出示例题情境图。
问:你看到了什么?生
杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。
(2)出示表格。
高度/㎝ 2 4 6 8 10 12
体积/㎝3 50 100 150 200 250 300
底面积/㎝2
问:你有什么发现?
学生不难发现:杯子的底面积不变,是25㎝2。
板书
教师:体积与高度的比值一定。
(2) 说明正比例的意义。
① 在这一基础上,教师明确说明正比例的意义。
因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。
板书出示
像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
六年级数学《正比例》教案【第二篇】
学习目标
(一)知识教学点
1、使学生理解正比例的意义。
2、能根据正比例的意义判断两种量是不是成正比例。
(二)能力训练点
1、培养学生用发展变化的观点来分析问题的能力。
2、培养学生抽象概括能力和分析判断能力。
(三)德育渗透点
1、通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。
2、进一步渗透函数思想。
教学重点:
使学生理解正比例的意义。
教学难点:
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。
教具学具准备:
投影仪、投影片、小黑板。
教学步骤
一、铺垫孕伏
用投影逐一出示下列题目,请同学回答:
1、已知路程和时间,怎样求速度?
2、已知总价和数量,怎样求单价?
3、已知工作总量和工作时间,怎样求工作效率?
二、探究新知
1、导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。
2、教学例1
(1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米??
(2)出示下表,并根据上述内容填表。
(3)边填表边思考:在填表过程中,你发现了什么?
学生交流时,使之明确。
①表中有时间和路程两种量。
②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米?时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。
教师点拨:像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:
两种相关联的量)
③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。
教师问:根据计算,你发现了什么?
引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。
教师指出:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)
④比值60,实际就是火车的速度。用式子表示它们的关系就是:
(4)教师小结:
刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总
3、教学例2
(1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。
(2)观察上表,引导学生明确:
①表中有数量(米数)和总价这两种量,它们是两种相关联的量。
②总价随米数的变化情况是:
米数扩大,总价随着扩大;米数缩小,总价也随着缩小。
③相对应的总价和米数的比的比值是一定的。
④比值,实际就是这种花布的单价。用式子表示它们的关系就是:
(3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)
4、抽象概括正比例的意义。
(1)比较例1、例2,思考并讨论,这两个例子有什么共同点?
(2)学生初步交流时引导学生明确:
①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。
教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)
③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。
(学生答不出来时,教师引导、点拨,并补充板书:两种量中)
(3)引导学生抽象概括出两例的共同点:
两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。
(4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。(补充板书:如果这成正比例的量正比例关系)
这就是我们这节课学习的“正比例的意义”(板书课题)
(5)看书11、13页的内容,进一步理解正比例的意义。
(6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。
(7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?
(9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?
5、教学例3
(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
(2)根据正比例的意义,由学生讨论解答。
(3)汇报判断结果,并说明判断的根据。
教师板书:面粉的总重量和袋数是两种相关联的量。
所以面粉的总重量和袋数成正比例。
6、反馈练习
让学生试做第13页的做一做,并订正。
三、巩固发展
1、完成练习三第1题。
先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?
先让学生自己判断,再订正。
四、全课小结(师生共同进行)
通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?
六年级数学《正比例》教案【第三篇】
教学内容:
P62~P63页的例1及相应的“试一试”“练一练”。完成练习十三第1~3题。
教学目标:
1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3.让学生进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重难点:
重点:结合实际情境认识成正比例量的特点,加深对正比例量的理解。
难点:能跟据正比例的意义判断两种相关联的量是否成正比例。
教学准备:
课件
课时安排:
第一课时
课前设计:
一、导入。
谈话:通过将近六年的数学学习,我们已经了解了一些数量之间的关系,例如行程问题中速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点,更深入地研究数量之间的关系,什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。
二、教学例1。
1.出示例1的表格。提问:表中列出了哪两种量?(板书:时间和路程)观察表中的数据,哪一种量的变化引起了另一种量的变化?你是怎么看出来的?
指名回答。
谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)“关联”是什么意思?为什么说路程和时间是两种相关联的量?
2.我们已经知道路程和时间是两种相关联的量。还要进一步研究,这两种量的变化有什么规律?
3.仔细观察表中的数据,这两种量在变化中有没有什么不变的规律呢?现在小组内讨论,再在班内交流。(有的学生可能会发现两种量中所对应的两个数的比值不变)
提问:观察这些比值,你发现了什么?这个比值80表示什么?(速度)你能用一个式子来表示上面的规律吗?根据学生回答,板书:=速度(一定)
4.讲述:通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值一定(也就是速度一定)。具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例;行驶的路程和时间成正比例的量。(板书:路程和时间成正比例,路程和时间是成正比例的量)
5.谈话:这就是这节课我们所学习的正比例。(板书课题)请阅读课本第62页的一段文字,各自默读,边读边画。
再指名读。提问:你能读懂吗?
在这题中,哪个量和哪个量是成正比例的量?同桌互相说一说为什么时间和路程是成正比例的量,并在全班交流。
三、教学“试一试”
1.出示“试一试”,学生自由读题。
2.要求学生根据已知条件把表格填写完整。
3.学生根据表中数据,先尝试独立完成表格。下面的四个问题,然后和同桌交流。
4.全班交流。板书:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。
5.让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
四、用含有字母的式子表示正比例关系。
1.比较例题和“试一试”的相同点。
提问:观察上面的两个例子,它们有什么相同的地方呢?
2.谈话:如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?
谈话:这是正比例关系式表达式,对这个式子要这样理解:和表示两种相关联的量,比的比值一定,我们就说和成正比例。
五、巩固练习
1.完成第63页“练一练”。
学生独立思考并作出判断,要用完整的语言说出判断的理由。
2.完成补充习题。
一辆自行车在公路上行驶,行驶的时间和路程如下表。
时间/时123456……
路程/千米355060708590……
这辆自行车行驶的时间和路程是相关联的量吗?成正比例吗?为什么?
先独立思考,再和同桌说一说。
全班交流,并讨论:成正比例的量必须符合哪些条件?
3.完成练习十三第1题。
(1)学生按题目要求尝试独立完成。
(2)全班交流,重点让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。
4.完成练习十三第2题。
(1)让学生独立判断,并说明理由。
(2)谈话:如果去掉“同一时间”这个前提,物体的高度和影长还成正比例吗?
5.完成练习十三第3题。
(1)说一说:将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?
(2)画一画:在书上画出放大后的图形。
(3)算一算:算出每个图形的周长和面积,并填在表中。
(4)讨论表格下面的两个问题。谈话:两种量若要成正比例必须是相关联的量,但相关联的量不一定成正比例,只有当两种相关联的量的比值一定时,它们才成正比例。
六、全课。
提问:通过这节课的学习,你有什么收获?
板书设计
认识成正比例的量
时间和路程路程和时间是两种相关联的量。
=80=80=80……
=速度(一定)
路程和时间成正比例,路程和时间是成正比例的量。
总价和数量是相关联的量,=单价(一定),总价和数量成正比例
=(一定)
六年级数学《正比例》教案【第四篇】
教学目标:
1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:
对于与正比例函数概念的理解。
教学难点:
根据具体条件求与正比例函数的解析式。
教学方法:
结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式。
一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的。特别地,当b=0时, 就成为( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂小時后,共漏出原油多少公升
上一篇:《游山西村》教案【实用5篇】
下一篇:语文教学方法有哪些精编4篇