数学二次根式教案【实用5篇】
【导言】此例“数学二次根式教案【实用5篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
次根式教案【第一篇】
教材分析:
本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:
本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知)山草香●(识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
设计理念:
新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。
教学目标知识与技能目标:
会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。
过程与方法目标:
通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。
情感态度与价值观:
通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣。
重点、难点:重点:
合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。
难点:
二次根式加减法的实际应用。
关键问题:
了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。
教学方法:.
1.引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。
2.类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。
3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。
数学二次根式教案【第二篇】
1、下列图像中可能是反比例函数y=的图像的共有()
2、在同一直角坐标系下,直线y=x+1与双曲线y=的交点的个数为()
个个个D.不能确定
3、反比例函数y=-的图像是_______,该函数图像在第_______象限。
4、已知反比例函数y=的图像经过点(1,-2),则这个函数的表达式是_______.
5、已知双曲线y=经过点(-1,2),那么k的值等于_______.
6、在平面直角坐标系中,分别画出下列函数的图像:
(1)y=(2)y=-
7、反比例函数y=的图像经过点(-2,3),则k的值为()
--
8、反比例函数y=的图像大致是()
9、如图,点P(-3,2)是反比例函数y=(k≠0)的图像上
一点,则反比例函数的解析式为()
=-=-
=-=-
10、函数y=-的图像上所有点的横坐标与纵坐标的乘积是_______.
11、已知点P为函数y=图像上一点,且P到原点的'距离为2,则符合条件的点P有__个
12、分别在坐标系中画出下列函数的图像:
(1)y=(2)y=-
13、反比例函数y=的图像经过点(-2,4),求它的解析式,并画出函数图像,图像分布在哪几个象限?
14、设某一直角三角形的面积为18cm2,两条直角边的长分别为x(cm),y(cm)。
(1)写出y(cm)与x(cm)的函数关系式;
(2)画出该函数的图像;
(3)根据图像,求解:①当x=4cm时,y的值;②x等于多少时,该直角三角形是等腰直角三角形?
参考答案
双曲线二、四 =- 5.-3 6.略
10.- 12.略 =- 图像略 分布在二、四象限 14.(1)y= (2)略(3)①y=9 ②x=6
次根式教案【第三篇】
一、内容解析
本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.
对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.
二、目标和目标解析
1.教学目标
(1)经历探索二次根式的性质的过程,并理解其意义;
(2)会运用二次根式的性质进行二次根式的化简;
(3)了解代数式的概念.
2.目标解析
(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;
(2)学生能灵活运用二次根式的性质进行二次根式的化简;
(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.
三、教学问题诊断分析
二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力。
本节课的教学难点为:二次根式性质的灵活运用。
四、教学过程设计
1.探究性质1
问题1 你能解释下列式子的`含义吗?
师生活动:教师引导学生说出每一个式子的含义.
设计意图让学生初步感知,这些式子都表示一个非负数的算术平方根的平方。
问题2 根据算术平方根的意义填空,并说出得到结论的依据。
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
设计意图学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.
问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0).
设计意图让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力。
例2 计算
(1)
(2)
师生活动:学生独立完成,集体订正。
设计意图巩固二次根式的性质1,学会灵活运用。
2.探究性质2
问题4 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
设计意图让学生初步感知,这些式子都表示一个数的平方的算术平方根。
问题5 根据算术平方根的意义填空,并说出得到结论的依据。
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
设计意图学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.
问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0)
设计意图让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力。
例3 计算
(1)
(2)
师生活动:学生独立完成,集体订正。
设计意图巩固二次根式的性质2,学会灵活运用。
3.归纳代数式的概念
问题7 回顾我们学过的式子,如 ___________ ( ≥0),这些式子有哪些共同特征?
师生活动:学生概括式子的共同特征,得得出代数式的概念。
设计意图学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力。
4.综合运用
(1)算一算:
设计意图设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号。
(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?
设计意图通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维。
(3)谈一谈你对 与 的认识。
设计意图加深学生对二次根式性质的理解。
5.总结反思
(1)你知道了二次根式的哪些性质?
(2)运用二次根式性质进行化简需要注意什么?
(3)请谈谈发现二次根式性质的思考过程?
(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.
6.布置作业:教科书习题第2,4题。
次根式教案【第四篇】
教学内容:
1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;
2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
教学方法:
1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
知识点
上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。
二、展示目标,自主学习:
自学指导:认真阅读课本第3页——4页内容,完成下列任务:
1、请比较与0的大小,你得到的结论是:________________________。
2、完成3页“探究”中的填空,你得到的结论是____________________。
3、看例2是怎样利用性质进行计算的。
4、完成4页“探究”中的填空,你得到的结论是:____________________。
5、看懂例3,有困难可与同伴交流或问老师。
课时作业
教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800cm2,另一张面积为450cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈,结果保留整数)
次根式教案【第五篇】
教学设计思想
新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。
教学目标
知识与技能
1.知道什么是二次根式,并会用二次根式的意义解题;
2.熟记二次根式的性质,并能灵活应用;
过程与方法
通过二次根式的概念和性质的'学习,培养逻辑思维能力;
情感态度价值观
1.经历将现实问题符号化的过程,发展应用的意识;
2.通过二次根式性质的介绍渗透对称性、规律性的数学美。
教学重点和难点
重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;
难点:确定二次根式中字母的取值范围。
教学方法
启发式、讲练结合
教学媒体
多媒体
课时安排
1课时
下一篇:小班音乐教案小蝌蚪【最新5篇】