初一数学上册教案 初一数学上册教案精选5篇

网友 分享 时间:

【导言】此例“初一数学上册教案 初一数学上册教案精选5篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初一数学上册教案【第一篇】

对话探索设计

〖复习

我们知道,所有的分数都可以写成两个整数的比。有限小数可以写成两个整数的比吗?所有的有限小数都是分数吗?可以写成两个整数的比吗?是不是分数?

结论:所有的有限小数和无限循环小数都是分数。

〖探索1

小学时所指的整数包括正整数和零,学了负整数以后,今后我们所指的整数与小学时所指的整数有什么不同?

结论:正整数﹑零﹑负整数统称整数。

〖探索2

下列负数哪些是负分数?

-12, ,-, ,-, .

〖探索3

所有正整数组成正整数集合,所有负整数组成负整数集合。请把下列各数填入它所属于的集合的大括号里:

1, , -700, -, -, 0, , , , .

正整数集合:{ }负整数集合:{ }

整数集合:{ }

正分数集合:{ }负分数集合:{ }

(注意:大括号内的'省略号表示什么?)

〖探索4

为什么不是分数?如果说所有的分数都是小数,对吗?反过来,所有的小数都是分数,对吗?

结论: (1)小数可以分为无限小数和有限小数两类,而无限小数又可分为(无限)循环小数和无限不循环小数两类;

(2)分数一定是小数,小数不一定是分数。

〖探索5

整数和分数统称有理数。

在数-100, , -7, , -, 0, , ,中,不是分数的是___________________;不是小数的是_____________;不是有理数的是__________.

(友情提示:,都是小数,但都不是分数,自然也都不是有理数。你答对了吗?)

〖练习

P10.练习

作业

P18.习题1.

补充作业

1.列出竖式,把分数化为小数。(体会分数不可能是无限不循环小数。)

2.把下列小数化为分数:, .

备选素材

1.判断:

(1)一个有理数,不是正数,就是负数;

(2)一个有理数,不是整数,就是分数;

(3)一个有理数,是分数,就一定是小数;

(4)一个无限小数,如果不循环,就不是有理数;

(5)小数就是分数;

(6)有理数只能分成两类。

(7)负分数不是负数。

2.按符号分,整数可以分为正整数、______和______三类,而分数则分为__________和_________,共两类。

3.分数可以分为有限小数和________________两类。

4.满足什么条件的小数才是有理数?

5.(1)列出竖式,把分数化为小数;(体会分数不可能是无限不循环小数。)

(2)有的小数不是分数,你能举出一个例子吗?

(3)说明为什么是分数,而却不是。

6.有理数可以分为整数和分数两类,还可以按符号分为正有理数﹑____和___________三类。

7.把下列各数填在相应的集合里:

-|-3|, -(-), , -, , , , .

初一数学上册教案【第二篇】

从问题到方程:教案

学习目标

1.探索实际问题中的数量关系,并学会用方程描述;

2.通过对多种实际问题中数量关系的分析,初步感受方程是刻画现实世界的有效模型;

3.通过观察,归纳一元一次方程的概念。

导学提纲

1.左右两个图形中的天平都是平衡的,请回答以下问题:

(1)你能知道左图中的食盐有多少克吗?你是怎么知道的?

(2)右图中两个相同小球的质量相等,你能知道这两个小球的质量吗?

从问题到方程:同步练习

1.(20xx?哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,则下面所列方程正确的是(  )

×1000(26﹣x)=800x (13﹣x)=800x

(26﹣x)=2×800x (26﹣x)=800x

分析题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程。

解答解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得

1000(26﹣x)=2×800x,故C答案正确,

故选C

点评本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系。

《从问题到方程》测试

1.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为_____.

2.某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为_____.

3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套。设安排x名工人生产螺钉,根据题意可列方程得_____.

4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,若设这件T恤的成本是x元,根据题意,可得到的方程是_____.

初一的数学上册教案【第三篇】

一:教材分析:

1:教材所处的地位和作用:

本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

2:教育教学目标:

(1)知识目标:

(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

(3)思想目标:

通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

二:学情分析:(说学法)

1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

2:学生在列方程解应用题时,可能存在三个方面的困难:

(1)抓不准相等关系;

(2)找出相等关系后不会列方程;

(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

三:教学策略:(说教法)

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

1:“读(看)——议——讲”结合法

2:图表分析法

3:教学过程中坚持启发式教学的原则

教学的理论依据是:

1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。

2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例1中,不能把“设原来有X千克面粉”写成“设原来有X”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“X 字串7 ”“—15%X”“42500”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。

4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。

5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。

四:教学程序:

(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。

(二):教学简要过程:

1:复习提问:

(1):什么叫做等式?

(2):等式与方程之间有哪些关系?

(3):求X的15%的代数式。

(4):叙述代数式与方程的区别。

(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)

2:导入讲授新课:

(1):教具:

一块小黑板,抄212例1题目及相对应的空表格。

左边右边

(2):新课引述:

(3):讲述课文212例1:

(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出以下关系:原来重量—运出重量=剩余重量(A)(在指导学生分析寻找题意相等关系时,可能存在学生分析问题思路不同,会找出如下关系:原来重量=运出重量+剩余重量,原来重量—剩余重量=运出重量的相等关系来,这主要由于学生思路不同,得出的关系表面不同,但思路是正确的,应加以鼓励培养学生这种发散思维能力。)

指导学生设原来重量为X千克。这里分析等式左边:原来重量为X千克,运出重量为15%X千克,把以上填入表格左边。 字串7 分析等式右边:剩余重量为42500千克,填入表格右边。

(目的是:通过分析使学生易看出,先弄懂题意,找出相等关系,再按照相等关系来设未知数和列代数式,有利于降低列方程解应用题的难度)

把以上左边和右边的代数式分别代入(A)中,同时要求学生注意方程的左边和右边的单位要一致,就可以列出方程。

同时要求学生在解答过程中勿漏写“答”和“设”,且都不要漏写单位。

结合解题过程向学生介绍一元一次应用题解法的一般步骤:

课本215黑体字

3:课堂练习:

课文216练习1,2题

(目的是:让学生通过适当的模仿例题的解题思想方法从而加深对本课的内容的理解掌握。)

4:新课巩固:

学生对本节内容进行要小结:

列方程解应用题着重于分析,抓住寻找相等关系。解一元一次应用题的一般步骤及注意事项。

(目的:让学生加深对应用题的解法的认识和该注意事项的重视。)

5:作业布置:

课文221习题4-4(1)A组1,2,3题

(目的:在于检验学生对本节内容的理解和运用程度,以及实际接受情况,并促使学生进一步巩固和掌握所学的内容。)

五:板书设计:

4*4一元一次方程的应用:

例题:小黑板出示例1题目解:设原来有X千克面粉,那么运

相等关系:原来重量—运出重量=剩余重量出了15%X千克,依题意,得

等式左边:等式右边:X—15%X=42500

原来重量为X千克,剩余重量为42500千克。解这个方程:

运出重量为15%X千克。85/100*X=42500

解一元一次方程的一般步骤:X=50000(千克)

小黑板出示课文215黑体字内容提要答:原来有50000千克面粉。

初一的数学上册教案【第四篇】

(一)知识点目标:

1.了解正数和负数是怎样产生的。 2.知道什么是正数和负数。 3.理解数0表示的量的意义。

(二)能力训练目标:

1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求: 通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:

知道什么是正数和负数,理解数0表示的量的意义。

教学难点:

理解负数,数0表示的量的意义。

教学方法:

师生互动与教师讲解相结合。

教具准备:

地图册(中国地形图)。

教学过程

引入新课:

1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、最好? 内容:老师说出指令: 向前两步,向后两步;

向前一步,向后三步; 向前两步,向后一步; 向前四步,向后两步。 如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:

1.自然数的产生、分数的产生。 2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、

3 1 等是正数(也可加上“十”) -3、-2、

-3 1等是负数。 4、数0既不是正,也不是负数,0是正数和负数的分界。 0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。 5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图)让学生观察地形图上的标注和记录支出、存入信息的

巩固提高:练习:课本P5练习 课时小结:这节课我们学习了哪些知识?你能说一说吗?

课后作业:课本P7习题的第1、2、4、5题。 活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。

(1)美美得95分,应记为多少?

(2)多多被记作一12分,他实际得分是多少?

课后反思:

初一的数学上册教案【第五篇】

教学目标

知识与技能

理解合并同类项的法则,会用合并同类项法则解一元一次方程,并在此基础上探索一元一次方程的一般解法。

过程与方法

通过探索合并同类项法则的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验。

情感、态度与价值观

通过探索合并同类项法则并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣。

教学重难点

重点:合并同类项法则的探索及应用。

难点:合并同类项法则的理解和灵活运用。

教学过程

一、温故知新

师:你们知道等式的基本性质是什么吗?

学生回答,教师点评。

师:利用等式的基本性质解方程:

(1)2x+3=x+4;(2)5x+4=5-3x.

学生解答,然后集体订正。

问题展示:

问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?

师:设前年购买计算机x台,那么去年购买计算机多少台?

生:2x台。

师:今年购买计算机多少台?

生:4x台。

师:题目中的等量关系是什么?

师生共同分析,列出方程:x+2x+4x=140.

用框图表示出解这个方程的具体过程:

x+2x+4x=140

合并同类项

7x=140

系数化为1

x=20

二、例题讲解

解下列方程:

(1)2x-x=6-8;

(2)+=-15×4-6×3.

解:(1)合并同类项,得-x=-2,

系数化为1,得x=4.

(2)合并同类项,得6x=-78,

系数化为1,得x=-13.

三、巩固练习

解下列方程:

+4x-2x=18-7.

+y=×6-1.

四、课堂小结

师:这节课你学习了哪些知识?获得了哪些经验?

学生发言,教师予以补充。

20 3039086
");