等比数列教案范例【精编4篇】
【阅读指引】阿拉题库网友为您分享整理的“等比数列教案范例【精编4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
等比数列教案【第一篇】
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用
教材难点:灵活应用等比数列及通项公式解决一般问题
教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
(1)学会通过实例归纳概念
(2)通过学习等比数列的通项公式及其推导学会归纳假设
(3)提高数学建模的能力
3、情感目标:
(1)充分感受数列是反映现实生活的模型
(2)体会数学是来源于现实生活并应用于现实生活
(3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四。 教学策略选择与设计
1.课前复习
(1)复习等差数列的概念及通向公式
(2)复习指数函数及其图像和性质
2.情景导入
等比数列教案【第二篇】
众所周知,教案是教学的重要工具,也是教学思路的重要体现.以下就笔者在教学中的教案设计与启发式教学的联系谈一点体会.
1教学片段描述
上课开始,教师首先通过投影给出引例:
×月×日是我校20周年校庆,某校友向学校捐赠了一株名贵的树苗.已知现在树苗的高度为1米,第n年树苗的高度记为an,如果这棵树的生长规律满足an+1―an=(12)n,则50周年校庆时这棵树的高度为多少?
教师先是把题目通读了一遍,就停下来给学生思考.学生开始看到题目的反应是相视一笑,有的还小声的耳语了几句,但马上就转移到问题上,开始动笔尝试解决.教师在学生中间观察学生的解题进展之后,提问一名学生回答.
师:你是如何考虑的?
此时教师除了注意听取她的回答之外,还留意着其他学生的反应.
生:由已知可以得到a1=1, an+a-an=(12)n,那么先要把它的通项an求出来.
师(追问):应该如何从上式中得出通项an?
生:因为a2-a1=12,a3-a2=(12)2, a4-a3=(12)3,……,an+a-an=(12)n,把这些式子加起来就可以把中间的项去掉,得到通项公式是an=2-(12)n-1.
师:大家认为她的答案是不是正确的?
生:是的.
师:很好,那么现在我们就来一起看看到底在我校50年校庆的时候,这个树能有多高了.
师:要求树高,就是当n=31时,求出an=2-(12)30是多少.
对于n到底应该是带多少,学生的集体回答并不一致,教师见状就快速的在黑板上写出了取值,并且直接给出了结果.
师:我们来看看这个通项的得出用了什么方法?
生:累加法.
师:对,那么对于什么形式的数列我们在求通项的时候用到累加法呢?
生:an+1-an=f(n).
学生边说,教师边板书,还强调了一下累加的应用形式.又给出了变式1
师:已知a1=1,an+1=12an+1,求an.
稍微停顿了一下,学生尝试解答.
师:我们从已知数列的递推式子得出数列的前几项是多少?
生(一起):a1=1,a2=32,a3=74,a4=158.
师:从这几项中我们来猜测一下数列的通项是什么?
生(少部分比较快,大部分都有些迟疑,不太确定的说):an=2n-12n-1.
师(见状马上):我们来观察一下这个式子与我们的已知通项有什么关系?
(停了一下)变形一下得到:an=2-(12)n-1,即an-2=(12)n-1,那么an-2可以看作是一个新的等比数列bn,下面的求通项的过程我们就不在板书了.有了这样的分析之后我们再回头看已知式子就可以把它变换成什么形式?
生:an+1-2=12(an-2),这样就与刚才的变换联系到一起了.
师(不失时机):对,我们这下可找到了解决这类题目的关键,利用变化已知得到一个新的等比或等差数列,转化成我们熟悉的常规数列使我们的通项可以求出.
下面学生纷纷表示认同,并且有部分学生还把这个思路记了下来.教师又给出了变式2.
师:an+1=2an+1.
学生很快得出了通项.
师:看来大家对这种方法很熟练了,那么我们再来看个题目.变式3:an=13an+1
学生们面对这个题目,本来都是很快的想和刚才一样得出解答,但是尝试了一下,却有大多数都停了下来.教师见状,开始板书,并提问了一名学生.教师在黑板的式子左右两侧分别画了一个方框.学生开始还显出没有明确的思路,有些迟疑,但在教师画出了两个方框之后,就很自信的回答了.
师:和刚才一样,我们要构造一个新的等比数列,我们应该填多少呢?an+1+=13(an+).
生:设这个数为x,由系数可以得到x=-32,这样这个问题就解决了.
师(对学生的回答非常的满意):非常好,大家来看看我们用到的求解方法叫做什么?
生:待定系数法.
师(又总结到):是的,这样对于形如数列an+1=pan+q通项我们都可以通过待定系数法转化成新的等比数列来解决.
2教学反思:
新时代的数学教师应适应新课改的要求,积极改进自身的教育,教学理念,应从学生的实际出发,创建有助于学生自主探究学习的问题情境,引导学生通过实践、探索、交流获得知识形成能力、发展思维、学会学习.
2.1科学利用教材培养探究的意识
数学课堂教学的探究学习有两个显著的特征:其一是教学内容问题化,即从问题为中心组织教学内容,其二教学过程的探索化,而教师为学生创立学习情境、提供解决问题的依据料材、由学生独立地探究发现知识和解决问题.英国哲学家波普尔系统的提出了科学界公认科学研究始于问题的命题.以问题作为教学的出发点,教师在设计教学方案时,不是直接以感知教材为出发点,而是把教材上的知识点编成需要学生探究的问题,激发学生的探究兴趣,让学生在尝试中体验和创新,使传统意义上的教学内容变成学生对数学问题进行探究、解决的过程.
2.2设置问题情景激发探索欲望
在教学过程中尽量创造充满求知欲望的教学情境,提出富有启发性的问题捕捉学生创造性思维的兴奋点,鼓励学生去探索,去展现,这是培养学生创新意识的前提.
从不同的数学内容的实际出发、构建不同的问题,通过精心创立问题情境,让学生达到“愤排”状态,也就是孔子所说的“不愤不启,不愤不发”让学生真正“跳起来摘桃子”
2.3设置最近发展区,激活学生思维
当讲完一个题后,再对题目进行研究:增减条件、改变设问方式、揭示解题技巧及思维方法,给学生设置“最近发展区”,不仅能起到一题多练,一题多得,触类旁通的作用而且易激活学生的思维,产生强烈有探究意识.
在问题类比,方法迁移,归纳总结规律的过程中,师生的信息交流畅通,及时反馈、评价、矫正,学生的思维处于活跃状态,学生将顺利完成了相应的题组练习.
2.4引导学生深入思考,优化思维品质
对问题的理解如果满足于一知半解,停留在知识的表面,就不利于探究意识的培养.因此在讲解教材例题时,一定要发挥例题的潜力,引导学生深入思考,才能起到优化思维作用.
总之,教师在教学时,必须充分重视其潜在着的数学功能,通过提出类似的问题和解答这些问题,扩大解题的“武器库”,以激发学生学习的兴趣,使学生的探究能力和创新能力得到更进一步的提高.
本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文
等比数列教案【第三篇】
关键词:高中数学;高效课堂;自主学习
有人说,数学是科学皇冠上的一颗明珠。在科学领域中,数学是一门基础学科,没有了数学作为工具,任何的科学难题都无法解开。人类的科技文明高速发展,离不开数学的灵活运行。高中阶段的数学知识为数学渗入应用领域的过渡,那么高中数学教学中,就要将数学知识与相关学科建立起联系,并逐渐向应用领域渗透,展开生动数学课堂教学,以提高学生的综合素质。
一、明确高中数学的教学目标
要出色地完成高中数学教学任务,就要将教学目标建立起
来。提高学生对于数学知识的综合运用能力,首先要引导学生对于数学产生认知,以情感教学的方式,让学生将兴趣融入数学解题技能中,以在此基础上培养学生自主学习的能力,达到高中数学的预期教学目标。
二、营造和谐的高中数学课堂教学氛围
对于很多学生来讲,高中数学的学习就是为了应对高考,所以,学生会更为注重高考试题的类型以及解题方式,导致高中数学的教学目的失去了实际意义。数学教师要提高课堂教学效率,就要首先卸下学生所承担的数学高考试题解题重负,建立起和谐而融洽的高中课堂教学氛围,让学生感受到数学之美,并对数学的学习予以重新定位。教师的责任是传授知识,所采用的方式是引导教学。只有当教师与学生建立起平等互信的关系,针对数学问题形成互动式交流,才能更好地促进学生的学习。在这种课堂教学模式下,教师是知识的引导者,学生是课堂的主体,教师在关注学生的个性化特征的同时,将其作为教学参考因素纳入数学教学模式中,建立起适合于学生学习并促进学生理解数学知识的载体,以形成轻松愉快的数学学习环境。
人教A版湖南教材中“函数的概念”教学,可以采用问题教学方式,以多媒体课件辅助,营造生动有趣的数学课堂氛围。教师在提出问题时,采用阶梯形问题模式,即如何理解映射和函数的概念?为什么函数Y要有与之相对应的取值范围?如何从映射的角度定义函数?展开问题教学,学生会从问题的角度思考数学知识原理,从而掌握数学课堂教学重点。为了深化学生对于数学课堂知识的理解,运用多媒体课件展示课堂教学内容。
课件上展示函数对应关系:
假设集合A和集合B都是非空数集。X属于集合A中的任意一个数,在对应关系f下,集合B中唯一与之对应的为f(x),那么,f:AB就可以称为:从集合A到集合B的一个函数,记作:y=
f(x),x∈A。
这种多样化的数学教学方式,很容易让学生将情感融入其中,并在理解的基础上形成一些问题。按照教学的备课教案进行教学,如果出现了课堂生成的现象,教师就将这种课堂意外巧妙地运用,按照学生的思维模式延续教学,一方面尊重了学生的主观思考,另一方面给课堂教学增添了活力,以实现数学教学的生动化和多元化。
三、引入问题导学法,提高学生对高中数学的认知能力
数学的问题导学法,是将新的数学知识建立在学生已经掌握的数学知识的基础上,以引导学生在原有的知识认知基础上向更深入的领域探究。比如,等比数列在日常生活中就已经有所接触,进入到高中阶段,所涉及的等比数列以理论知识呈现出来。教师在教学中,可以将生活实例引入教学中,让学生对于等比数列的概念形成认知。比如,分期储蓄的计算就与等比数列存在着直接的关系。每年的1月1日在银行存款1000元,年利率为3%,那么,第二年的本金即为:1000(1+1%)+1000;第三年的本金为1000(1+1%)2+1000(1+1%)+1000;第四年的本金为:1000(1+1%)3+
1000(1+1%)2+1000(1+1%)+1000,以此类推。渐渐地,涉及高中等比数列的知识就引入到课堂中。
高中数学教学中采用这种问题导学法,让学生对于数学知识的理解已经不再从单纯的理论层面理解,而是从多层面形成对于知识体系的认知,以构建属于自己的数学思想。
综上所述,在高中数学课堂教学中,营造活跃的课堂氛围,形成师生之间的互动交流,让学生在轻松愉快的教学环境中学习数学知识,以将情感渗入到数学知识的学习中。灵活地运用问题导学法,配合多媒体辅助教学,使学生对于数学知识体系产生认知,以提高数学知识的综合运用能力。
参考文献:
[1]钟银兵。高中数学中的问题导学法探究[J].新课程学习:下,2013(08).
[2]吴杰。高中数学高效课堂初探[J].高中数学教与学,2011(18).
[3]李桂初。构建高中数学高校课堂的策略初探[J].课程教学研究,2012(16).
等比数列教案【第四篇】
作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的**纲领和行动方案。那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。
下一篇:狮子和鹿教案(4篇)