等比数列教案精编3篇
【阅读指引】阿拉题库网友为您分享整理的“等比数列教案精编3篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
等比数列教案1
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
设计意图直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
设计意图一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的***,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?那么涂色部分还可以怎么算呢?,也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
设计意图将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?再接着加,一直加到,得数等于?随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
设计意图利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的'解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
等比数列教案2
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用
教材难点:灵活应用等比数列及通项公式解决一般问题
教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
(1)学会通过实例归纳概念
(2)通过学习等比数列的通项公式及其推导学会归纳假设
(3)提高数学建模的能力
3、情感目标:
(1)充分感受数列是反映现实生活的模型
(2)体会数学是来源于现实生活并应用于现实生活
(3)数学是丰富多彩的而不是枯燥无味的
三、教学对象及学习需要分析
1、 教学对象分析:
(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四。 教学策略选择与设计
1.课前复习
(1)复习等差数列的概念及通向公式
(2)复习指数函数及其图像和性质
2.情景导入
等比数列教案3
作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的**纲领和行动方案。那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。
上一篇:短跑体育教案 实用4篇
下一篇:立定跳远教案(实用3篇)