高中数学无穷递降等比数列求和公式精编3篇

网友 分享 时间:

【引言】阿拉题库漂亮网友为您分享整理的“高中数学无穷递降等比数列求和公式精编3篇”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!

.公式法1

如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式。注意等比数列公示q的取值要分q=1和q≠1.

.分组求和法2

若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减。

性质3

①若m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

②在等比数列中,依次每k项之和仍成等比数列;

③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2;

④若G是a、b的等比中项,则G^2=ab(G≠0);

⑤在等比数列中,首项a1与公比q都不为零。

⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q^k+1。

⑦数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零。注意:上述公式中A^n表示A的n次方。

⑧当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。

221381