《比的应用》教案(实用3篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“《比的应用》教案(实用3篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《比的应用》教学设计1

教案内容:北师大版课程标准实验教材六(上)p55—p56。

设计理念:

《数学新课程标准》指出:义务教育阶段的数学课程其基本出发点是促进学生全面、持续、和谐地发展。为此,本课从学生地生活经验出发,把陌生枯燥地应用题与学生地熟悉地生活背景联系起来。通过“问题情景”——“建立模型”——“解释应用与拓展”,这三个阶段让学生亲身经历数学建构地过程,体验策略地多样化,初步形成评价与反思意识,从而提高解决问题地能力。

教学目标:

知识教学点:

1、理解按一定比来分配一个数的意义。

2、掌握按比例分配应用题的特征和方法。

能力训练点:

1、发展学生的思维能力,培养学生利用所学知识解决实际问题的能力。

2、培养学生的语言表达能力和归纳能力。

3、培养学生合作学习的能力,分析能力,概括能力。

德育渗透点:培养学生的数学兴趣,养成良好的思维品质、团结协作和开拓创新的精神。

教学重点、难点:

1、理解按一定比来分配一个数量的意义。

2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。

教材分析:

这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。

学情分析:

对于按比分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

教学过程:

一、课前组织复习旧知

同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

学生自由发言,预设推断如下:

1、全班人数是9份,男生占其中的5份,女生占其中的4份。

2、以全班为单位“1”,男生是全班的,女生是全班的。

3、以男生为单位“1”,女生是男生的,全班是男生的。

4、以女生为单位“1”,男生是女生的,全班是女生的。

5、女生比男生少(或20%)。

6、男生比女生多(或25%)。

追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

二、创设情境,导入新知

看来大家对比的认识还是相当清楚的。那接下来我们一起来看一幅图——(课件出示情境图)能猜得出阿姨要大家帮什么忙吗?

1、把这些橘子分给大班和小班,你们说说看,都有哪些分法?

预设同学可能发表的意见,根据回答板书:

(1)平均分(若学生没提到,就以“我们以前不是学过‘平均分’吗?怎么没人提啊?”来引导分析)

追问:平均分是怎么分?明确就是每班分一半。

(2)一人一个

(3)按大班和小班人数的比来分(或说,把橘子总个数除以学生总数,看看每人

能得多少个,再分。)

追问:按人数比来分,那你能说出,大班和小班的人数比是多少吗?(3:2),怎

么分才是按3:2来分,你可以给大家介绍一下吗?其他同学也可以补充。

2、追问:还有其他分法吗?那么,在这么多种分法当中,你觉得哪种分法更合理

呢?(请两个学生互相补充,恩,这是你的道理,谁也来说说看?)

3、说明:刚才那两位同学分析得都对,因为两个班人数不一样,所以平均分看似公平其实不公平。而按两班人数比3:2,把橘子也按3:2来分,肯定比较公平合理。

设计意图:提供现实生活情境,使学生体会到数学与生活的联系,激发学生的学习兴趣,引导学生分析问题中的数学信息。

三、合作探究,解决问题

师:既然这样,如果我现在就给你140个橘子按3:2来分,你能求出大班和小班各可以分到多少个橘子吗?请把你的方法写下来。(课件背景图不变,演示教师话语)

1、师巡视辅导:写好的,可以和你组内的成员交流一下你的想法,有不同的方法都可以写下来。

2、请不同做法的学生上台板演,交流汇报(请板演的学生):“你先介绍一下你

是怎么想的吧。”等学生汇报后,问:“这个结果,大家同意吗?”再请其他同学复述:“还有谁也是这种做法的,你也来说说。”

方法一:实际操作,画表格。

大班小班

30个20个

30个20个

…………

方法二:画图,把大班画成3份,小班画成2份,这样一共是5份,

可以先求出一份是多少,再分别求出大班和小班分得的橘子数。

140个

方法三:列式,先想到5份,然后根据分数的意义求出结果。

3+2=5

140×=84(个)

140×=56(个)

追问:为什么要“×”?你能不能告诉大家表示什么?(引导明确:因为大班

人数占总人数的,所以它分到的橘子个数应该也要占橘子总数的。)

方法四:根据比的意义,

140÷(3+2)=28

大班:28×3=84(个)

小班:28×2=56(个)

追问:为什么要“÷(3+2)”?

答:大班分84个,小班分56个,比较合理。

3、引导小结:好,还有其他做法吗?这些方法都可以,但在这么

多方法中,你比较喜欢哪种呢?我个人觉得这两种方法各有千秋,都不错,建议大家都掌握。(以方法3、4为例讲解)这种方法是根据比与分数的关系,看看每种物体各占总数的几分之几,再用分数的知识来解答;这种方法是根据比的意义,看看一共分成几份,先平均分求出每份的具体数量,再各取所需,乘各自分得的份数。

设计意图:这个环节将学生自主探索的结果进行梳理。学生把各种各样的方法汇报完后,让学生说一说自己是怎么想的。在这个过程中以学生为主体,充分倾听学生的意见,将学生已有的经验与这节课新的知识增长点有机的联系起来,使得学生能够比较轻松得掌握新解决问题的办法。

四、实践应用

1、师:刚才我们共同探讨解决了这样一道“按比分”的问题,觉得有困难吗?有信心独自完成一道这样的题目吗?好,请大家自己读题分析完成,有几种方法都可以把它写下来。课件出示题目——

“幼儿园阿姨要调制2200克巧克力奶,说明书上介绍了其中巧克力和奶的比是2:9,你能帮阿姨算算调制这些巧克力奶需要用多少克奶和多少克巧克力吗?”

独立完成,师巡视辅导:“好,已经完成的举个手?谁愿意带着你的本子到台前来介绍你的方法?”

学生上台展示汇报后,师:“他做得对吗?还有其他做法吗?你也来介绍一下。”

2、师:非常棒,但一直做同类型的题目没意思。现在我把题型改一改,看看有谁大家被考倒。请看题,师读题:“幼儿园图书室有图书若干本,按3:2分给大班和小班后,大班小朋友分到了60本,你能帮小班小朋友算算他们能分到多少本吗?”怎么样,谁发现了它和前面题目不一样的地方?能解决吗?好,你能想到几种解题方法,都请你写出来。

师巡视辅导:有句俗话说“三个臭皮匠,抵个诸葛亮”,已经写好的同学不妨把你的做法在小组里和其他同学交流一下,通过思维碰撞,说不定你能得到更多灵感哦。先请一个小组的同学上来把你们的解法写出来。预设方法如下:

(1)60÷3×2=40(本)

说明:把大班人数看作3份,看看一份是多少,然后小班是这样的2份,再乘2。

(2)60÷×=40(本)

说明:把两班总人数看作单位“1”,大班是单位“1”的,先对应除求出单位“1”,然后小班是单位“1”的,再把单位“1”乘求出小班。

(3)60×=40(本)

说明:把大班人数看作单位“1”,小班人数是它的,就把单位“1”乘就可以了。

(4)60÷=40(本)

说明:把小班人数看作单位“1”,小班人数是它的,就把单位“1”除以就可以了。

(5)利用方程解

集体讲评,请板演的学生在台前说清过程:“先别急着下去,请你给大家介绍一下你的想法吧。”

问:还有其他解法吗?好,你说我写,你再介绍一下。

小结:解决生活中的实际问题时,同学们只要认真分析数量关系,就可以找出多种解题方法。看,我们集体的力量就是这么强大,一人只要说一种,就凑成了这么多种解题方法。其实,就算是“嫦娥奔月”那么伟大的事,都是集体智慧的结晶。所以说,只要继续发扬这种“团结协作、开拓创新”的精神,我们六年5班也一定会是最棒的。

设计意图:前后呼应情境,使学生的思维始终处在一个情境中,容易将前后的知识衔接起来。以上两个练习的设计将新学的知识进行拓展,层层深入,学生学习兴致更浓。渗透民族精神教育,养成良好的思维品质、团结协作和开拓创新的精神。

五、拓展延伸

师:在我们身边,关于团结互助的例子处处可见。比如(出示课件“献血屋”,播放“让世界充满爱”的背景音乐)“献血屋”,是提供给大家无偿献血用的。我国延续几千年的民族精神中,一直都倡导“兴仁义之师,行仁义之事”。而无偿献血,救助生命就是“行仁义之事”,它体现了我们社会主义社会团结互助、人道友爱和无私奉献的精神。但是因为个人体质的不同,有的人血液浓度过高,她就需要在献血前可以喝一些盐水来稀释血液。一般情况下,1克的盐要搭配20克的水。问题是,“如果我现在要配制一杯210克的盐水,你能告诉我需要盐和水各多少克吗?”好,请你用心搭配。

独立完成,请学生口头说,教师板演,并说清“比”是怎么得来的。

(引导明确:实际上“1克盐要搭配20克的水”就隐藏了盐和水的比是“1:2”)

小结:很多时候,题目里并不会明明白白告诉你“比是多少”,需要我们用慧眼去判断分析,找出它们是按什么比来分,再找出它们之间的比来进行计算。非常感谢大家的精心搭配,不过对于你们而言,无偿献血还为时过早,但你们可以为社会的公益事业、为希望工程做些什么呢?(自由回答)我们国家虽大,但向来都认为“四海之内皆兄弟,一方有难八方支援”,所以我们只要尽己所能,积少成多,也可以为希望工程作一份贡献。

2、如果现在有零花钱45元,具体用途如下表(课件出示图表,持续播放“让世界充满爱”背景音乐),将这45元按一定的比来分配,你会怎样安排这45元零花钱呢?先请你们在小组里制定出它们之间的比,然后计算。

学习用品爱心储蓄其他用途

::

元元元

请个别小组上台展示、汇报。

设计意图:通过两个练习的设计进行民族精神的德育渗透,将知识进行拓展延伸,与生活实际联系,提高学生的学习兴趣,对学生具有一定的挑战性。

六、评价总结,促进发展

师:这节课我们利用比的知识解决了许多问题,实际上,这就是我们今天要学的“比的应用”——课件揭示课题。请大家翻开书本第55页,再好好看看,书本上有哪些方法我们刚才没介绍过吗?是的,这些也是解决问题的方法,大家可以了解。但是跟我们刚才探讨的方法比较,哪种更方便啊?解决问题关键是讲究实效,所以我们要选择最佳方法。

那么学习了“比的应用”,你有什么想法吗?(自由发言)比在我们生活中的应用非常广泛,比如在建筑业、农业、医药等方面都需要非常精确应用比的知识,所以同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

《比的应用》教学设计2

教学内容:

人教版小学六年级数学第三单元第三节

教材分析:

《比的应用》是人教版小学数学六年级第十一册第三单元49页的内容。这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关实际问题的一个课例,掌握了《比的应用》的解题方法,不仅能有效地解决实际生活、现实工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”奠定了基础。

学情分析:

学生在学习了比的意义,比的基本性质,分数的意义等知识后,能将知识融会贯通,能将平均分与不平均分份数的知识联系和应用起来,使学生完全能找到按比例分配的方法。教师只起到启发,点拨和深化引导的作用。

教学目标

1、运用比的意义解决按照一定的比进行分配的实际问题;

2、在探索学习的过程中使学生掌握按比例分配问题的特征,能运用按比例分配的知识解决生活中的实际问题。

教学重点和难点:

能运用比的意义解决按一定比例进行分配的实际问题。

教学过程

一、复习旧知 情景导入

(出示课件)

六年级共有38人,其中,男,生和女生的`人数比是7:12,男,生是女生的人数的,女生是男生的人数,男生是全班人数的,女生是全班人数的xxx。

设计意图一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。为学习新知做铺垫

2、同学们请看大屏幕:这里有哪些数学信息?请你读一读。(课件图片出示)

(1)地球上的淡水含量与地球上水总量的比为3:100。

(2)安利洗涤剂与水的正常比是1:8。

(3)我们喝的鲜橙多中橙汁与水的比是1:9。

(5) 妈妈做米饭时米与水的比是1:3。

(5)一种咖啡奶,咖啡和奶的比为2:9

3、生活中平均分配的问题:

学校把种植42棵小树苗的任务分配给六年级人数相等的两个班,怎样分配才合理?

4、李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

师板书:按比例分配

设计意图学生能从三个例题中体会平均分配和按比例分配的实际意义。留下悬念,激发学生的学习兴趣。

二、合作学习 自主探索

(一)理解比例分配的意义

把一个数量按照一定的比例来分配。这种分配方法通常叫做按比例分配。

(二)学习例2:(出示例2):

某种清洁剂是浓缩液和水按1:4的体积比配置的。现有一瓶500毫升的这种清洁剂,其中浓缩液和水的体积分别是多少?

1、 指名读题、理解题意

2、 学生尝试:请同学在练习本上尝试解答一下,再在小组内进行交流

3、生汇报:不同做法的两名同学到前面板演,并要求板演的学生说出这样解答的道理

解法1:总份数 1+4=5 解法2 :总份数 1+4=5 每份是500÷5=100(毫升) 浓缩液有 500×1/5=100(毫升)

浓缩液有100×1=100(毫升) 水 有 500×4/5=400(毫升)水有 100×4=400(毫升)

答:浓缩液有100毫升,水有400毫升。

4、 提问:这两名学生解答的是否正确,要求学生说出每步求的是什么

5、比一比:比较一下这两种解法有什么不同,与我们学过的哪些知识有关(可在小组内交流)

学生汇报总结:

方法1是按平均分的份数进行计算的:先算出每份的体积,再分别算出浓缩液和水的体积。

方法2是按分数的意义进行计算的:先找出各部分数占总数的几分之几,再根据分数乘法的意义,分别算出浓缩液和水的体积。

6、这道题做得对不对呢?我们怎么检验?

提问后老师总结:把计算出来的浓缩液的体积加上水的体积是否等于500;也可以把计算结果去比,看是否是1:4。

强调:检验是我们解决问题的重要环节,他能告诉我们自己的解答是否正确,能帮助我们养成对自己做的每一件事都认真负责的学习态度。

(三)老师总结并强调计算方法:首先看清题里的条件给的是哪几个量的比再看题中给的量是否是这几个量的和,而后在选择合适的计算方法。并养成验算的好习惯。

(四)质疑问难

四、巩固新知 反馈练习,

(1)填空:

1)把20根小棒按2:3的比例分成两堆,一堆( )根,另一堆( )根。

2) 把20根小棒按1:3的比例分成两堆,一堆( )根,另一堆( )根。

(2)六(1)班要举行联欢会,班委决定买12千克水果,据调查,爱吃苹果的同学人数和爱吃梨的人数的比2∶1。请你算一算,苹果和梨分别买多少千克

(3)生活中的问题

李明与黄华合办股份制食品有限公司,李明出资20万元,黄华出资30万元,两年后盈利150万元,怎样分配利润才合理?

要求:独立完成,请学生口头说,教师板演,并说清“比”是怎么得来的。

设计意图此题为按比例分配问题的一个变式,解答开始上课时的疑问。引导学生找出部分量的比。让学生在解决实际问题的过程中感受学习的乐趣和价值。

2)一种什锦糖是由奶糖、水果糖和酥糖按照2︰5︰3混合成的。要配制这样的什锦糖500千克,需要奶糖、水果糖和酥糖各多少千克?

五、谈收获,课堂总结。

《比的应用》教学设计3

一、教材分析

《比例的应用》为全日制聋校数学第十五册第一单元的第三部分内容,这一部分的教学内容从构建上更注重学生技能的养成和知识的运用。把通过三个相关联的量求第四个量的运算,用方程的方法呈现为比例的形式,这样从视觉上更附和了聋生的认识特点,同时也把复杂的等量关系更清晰的更简单的体现在比例的内容里。让学生轻松的理解比例就是在等号两边表示两组相等的比。这样的方法也是比例应用题的一大特点。同时更有助于学生从理论知识到技能操作的转变,使新课程理念融入于特教课堂。

二、教学方法

情趣导入法、总结法、问题导入法及指导法。

三、教学目标

1、知识目标:理解应用题中比例的意义,并根据比例的性质解决应用问题。

2、能力目标:

①通过对应用题中已知条件与未知条件的分析并确定数量关系,培养学生逻辑思维能力和分析解决问题的能力

②通过求解的过程,培养学生的运算能力。

3、情感目标:培养学生的数学兴趣,激发自主探索的'求知欲。

4、缺陷补偿:通过对问题的分析,积累语言发展思维。重点:利用比例的意义确定等量关系。难点:数量间的运算关系。

四、教学流程:

1、兴趣入题

“同学们有没有想过毕业后未来的生活呢?现在我请大家为自己的将来设想一下,你准备做什么呢?”。

2、初探新知

出示根据学生的理想加工的题例。

董健昕同学经营一服装店,卖3件衣服可以盈利150元,按这样的收入计算,每月卖出80件可以盈利多少元?

让学生运用“三步”解题法,分析问题。

1看

已知条件包括:3件、盈利150元、80件求知条件:盈利多少元?

2找

从名数看包括四种数量:件数、盈利总额、件数、盈利总额。且四种数量是两两重复的。

确定数量关系:总额与件数间的关系是除法,进一步确定比例关系,总额:件数=总额:件数。

等号左边的总额为150元,件数为3件,等号的右边总额为?,件数为80件。

3解

解:设盈利?元。 150:3=?:80 3?=150×80?=150×80÷3?=4000答:可以盈利4000元。

巩固方法:

出示文本中的例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

让邻座的学生间进行比较分析,确定数量及数量间的关系并求解。

即时小结:

比例的形式就是:比=比,应用题中的比例即为:左边的数量关系等于右边数量关系。如何利用比例来解应用题就是看是否有两两相对的数量,并确定对应的数量间是否存在正、反比例关系。让学生从抽象到直观的掌握方法。

课业布置:

紧扣学生的理想出示题例二:职业课上,每天做8面国旗,要10天完成,如果每天做10面要几天完成呢?

板书设计:

比例的应用

1看:(已知:3件、盈利150元、80件)(未知:盈利?元?)2找:(总额:件数=总额:件数)3解

解:设盈利?元。 150:3=?:80 3?=150×80?=4000答:可以盈利4000元。

20 2291468
");