不等式的性质教案汇总10篇
不等式的性质包括传递性、对称性和反身性,理解这些性质有助于解决实际问题,如何运用这些性质呢?以下是网友为大家整理分享的“不等式的性质教案”相关范文,供您参考学习!
不等式的性质教案 篇1
一、教学目标
知识与技能:
认识一元一次不等式,会解简单的一元一次不等式;类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。
过程与方法:
通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。
情感态度与价值观:
感受数学知识之间的联系,提高对数学学习的兴趣。
二、教学重难点
重点:
掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。
难点:
一元一次不等式的解法。
三、教学过程
(一)引入新课
回忆不等式的概念以及一元一次方程的概念,明确指出今天学习的内容是《一元一次不等式》。并让学生利用不等式、一元一次方程的概念,尝试说一说什么是一元一次不等式?
(二)探索新知
学生类比不等式以及一元一次方程的概念,能够总结出:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
让学生回忆上节课学习的不等式x-7>26如何解决的,并提问学生有没有更加简便的方法解不等式?让学生类比解一元一次方程的步骤进行解题。
给出不等式2(1+x)<3;
强调每一个步骤,在第二题最后一步,强调当不等式的两边同时乘以(或除以)同一个负数时,不等号的方向改变。
解完不等式,先让学生回忆解一元一次方程的步骤是什么?并类比解一元一次方程的步骤,总结一下解一元一次不等式的步骤是什么?
归纳:解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa的形式。
(三)课堂练习
问题:解不等式,并在数轴上表示数集:5x+15>4x-1。
师生活动:学生独立思考完成,教师可适当指导,帮助学生理解不等式中的变形步骤。
(四)小结作业
小结采用发散性问题:你今天有什么收获?
作业:
不等式的性质教案 篇2
第一、问题导入
【知识回顾】同学们,上一节课我们学习了是学习了实数的大小,应用作差法我们可以比较实数和代数式的大小。
1、什么是作差法呢?
a>b a-b>0
a=b a-b=0
a<b a-b<0
2、作差法步骤:
最差–变形–比较–结论【课件展示情境】
第二、抛砖引玉
教师提问:生活中有没有比较大小的例子?刚刚期中考试完,想不想知道成绩呢?有些同学不仅仅想知道自己的还想知道别人的,四处打探,假设该同学考试的a分,打听到某1同学比他高是b分,又打听到某2同学是c分,比自己低,请问,该同学知不知道某1和某2的成绩比较呢?由生活实例则有b>a,a>c,所以b>c
数学来源于生活而又应用于生活,将生活中实例抽象成数学问题呢?
如何应用数学知识解决实际问题?
第三、实践体验
1、考试成绩比较
2、掰手腕亲身体验
第四、新课学习
(一)、性质1的学习
生活中实力抽象成数学问题后,如何证明不等式成立呢?
教师分析引导学生思考,学生认真读课本:一快速读,读大概;二认真读,读关键;三精准读,读问题。学生自行阅读课本P34-P35页内容,并找出不等式性质、以及各性质中的关键词、关键字。
教师PPT演示完整教学内容
性质1(传递性)
如果 a>b,b>c,则 a>c.
分析 :要证a>c,只要证 a-c>0.
证明 因为 a-c=(a-b)+(b-c),
又由 a>b,b>c,即 a-b>0,b-c>0,
所以 (a-b)+(b-c)>0.
因此 a-c>0.即 a>c.
(二)、性质2的学习
教师播放视频,学生思考视频内容,分析视频所反映的数学事实,请同学用数学语言描述城数学式子。引导学生自主探究, 组织学生“三读”课本。
问题导学:
(1)视频说明什么问题?
(2) 数学语言如何描述?
(3) 如何证明不等式成立呢?
教师给学生时间思考3分钟,学生合作交流后代表上台讲解证明过程
教师补充订正
教师演示完整教学内容
性质2(加法法则)
如果 a>b,则 a+c>b+c.
证明 因为 (a+c)-(b+c)=a-b,
又由 a>b,即 a-b>0,
所以 a+c>b+c.
思考:如果 a>b,那么 a-c>b-c.是否正确?
不等式的两边都加上(或减去)同一个数,不等号的方向不变.
师:出示题目,请学习通平台学生抢答
练习1
(1)在-6<2 的两边都加上9,得 3<11 ;
(2)在4>-3 的两边都减去6,得 -2>-9 ;
(3)如果 a<b,那么 a-3 < b-3;
(4)如果 x>3,那么 x+2 >5;
(5)如果 x+7>9,那么两边都减7,得 x>2.
推论1 如果 a+b>c,则 a>c-b.
证明 因为 a+b>c,
所以 a+b+(-b)>c+(-b),
即 a>c-b.
不等式中任何一项,变号后可以从一边移到另一边.
(三)、性质3的学习
如果 a>b,c>0,那么 a c>b c;如果 a>b,c<0,那么 a c<b c.
证明 因为 a c-b c=(a-b)c,
所以 当 c>0时,(a-b)c>0,即 a c>b c;
所以 当 c<0时,(a-b)c<0,即 a c<b c.
如果不等式两边都乘同一个正数,则不等号的方向不变,如果都乘同一个负数,则不等号的方向改变.
思考:如果 a>b,那么 -a>-b一定成立吗?学生思考并回答。
师:出示PPT出示题目,请学生小组讨论并回答
(1)在-3<-2的两边都乘以2,得-6>-4;
(2)在1>-2的两边都乘以-3,得-3>6;
(3)如果 a>b,那么-3 a >-3 b;
(4)如果 a<0,那么 3 a <5 a;
(5)如果 3 x>-9,那么 x <-3;
(6)如果-3 x>9,那么 x >-3.
第五、当堂测试
教师学习通平台发布当堂测试题,当堂评价,考察学生学习效率,激发学习动机。
第六、汇总小结
学习通平台汇总本节课内容。让学生畅谈本节课的收获,并将关键字上传学习通平台,老师引导梳理,总结本节课的知识点
不等式的性质教案 篇3
八年级《不等式的基本性质》教学设计
作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么问题来了,教学设计应该怎么写?下面是小编为大家收集的八年级《不等式的基本性质》教学设计,欢迎大家分享。
【教学重点与难点】
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.
教学难点:正确应用不等式的三条基本性质进行不等式变形.
【教学目标】
1、 探索并掌握不等式的基本性质
2、 会用不等式的基本性质进行化简
【教学方法】
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
【教学过程】
一、创设情境 复习引入
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)
问题:1、什么是等式?等式的基本性质是什么?
2、 什么是不等式?
3、 用“>”或“<”填空.
(1)7>3 (2)-1<3
7+5 3+5 -1+2 3+2
7-5 3-5 -1-4 3-4
(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
二、师生互动,探索新知
1、不等式的基本性质
问题1:观察思考问题3,猜想出不等式的性质
先让学生立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:
不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.
不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的’方向改变.
2、图形演示
通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。
3、拓展及应用
提问:不等式有对称性吗?
不等式有传递性吗?
【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的变化;不等式也有传递性,但要注意的是同向传递性。】
三、巩固训练,熟练技能:
1、(1) a – 3____b – 3;
(2) a÷3____b÷3
(3) ____;
(4) -4a____-4b
(5) 2a+3____2b+3;
(6) (m2+1) a ____ (m2+1)b (m为常数)
【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】
2、判断下列各题的推导是否正确?为什么
(1)因为>,所以-<-;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】
3、立完成习题
学生自己完成以下题目,之后进行集体讲解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
四、小结
师生共同小结本节课所学重点,不等式的基本性质的具体内容。
五、作业、
习题
不等式的性质教案 篇4
一、素质教育目标
(一)知识教学点
1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.
2.灵活运用不等式的基本性质进行不等式形.
(二)能力训练点
培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.
(三)德育渗透点
培养学生积极主动的参与意识和勇敢尝试、探索的精神.
(四)美育渗透点
通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操,数学教案-不等式和它的基本性质 教学设计方案(二)。
二、学法引导
1.教学方法:观察法、探究法、尝试指导法、讨论法.
2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
三、重点·难点·疑点及解决办法
(一)重点
掌握不等式的三条基本性质,尤其是不等式的基本性质3.
(二)难点
正确应用不等式的三条基本性质进行不等式变形.
(三)疑点
弄不清“不等号方向不变”与“所得结果仍是不等式”之间的`关系是学生学习的疑点.
(四)解决办法
讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.
四、课时安排
一课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.
2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.
3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.
七、教学步骤
(一)明确目标
本节课主要学习不等式的三条基本性质并能熟练地加以应用.
(二)整体感知
通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.
(三)教学过程
1.创设情境,复习引入
什么是等式?等式的基本性质是什么?
学生活动:独立思考,指名回答.
教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.
请同学们继续观察习题:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪题的不等号与7>4一致?
学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.
【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.
不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.
学生活动:观察思考,猜想出不等式的性质.
教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”
师生活动:师生共同叙述不等式的性质,同时教师板书.
不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?
学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.
【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?
师生活动:由学生概括总结不等式的其他性质,同时教师板书.
不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.
师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.
学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.
强调:要特别注意不等式基本性质3.
实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.
不等式的基本性质与等式的基本性质有哪些区别、联系?
学生活动:思考、同桌讨论.
归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.
①若 ,则 , ;
②若 ,且 ,则 , ;
③若 ,且 ,则 , .
师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.
注意:不等式除了上述性质外,还有以下性质:①若 ,则 .②若 ,且 ,则 ,这些先不要向学生说明.
2.尝试反馈,巩固知识
请学生先根据自己的理解,解答下面习题.
例1 根据不等式的基本性质,把下列不等式化成 或 的形式.
(1) (2) (3) (4)
学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.
教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.
解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.
所以
(2)根据不等式基本性质1,两边都减去 ,得
(3)根据不等式基本性质2,两边都乘以2,得
(4)根据不等式基本性质3,两边都除以-4得
【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与 或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.
例2 设 ,用“<”或“>”填空.
(1) (2) (3)
学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.
解:(1)因为 ,两边都减去3,由不等式性质1,得
(2)因为 ,且2>0,由不等式性质2,得
(3)因为 ,且-4<0,由不等式性质3,得
教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.
注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.
【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.
3.变式训练,培养能力
(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴( ) ④∵ ∴( )
⑤∵ ∴ ⑥∵ ∴ ( )
学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.
答案:
① (A) ② (B)
③ (C) ④ (C)
⑤ (C) ⑥ (A)
【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.
(2)单项选择:
①由 得到 的条件是( )
A. B. C. D.
②由由 得到 的条件是( )
A. B. C. D.
③由 得到 的条件是( )
A. B. C. D. 是任意有理数
④若 ,则下列各式中错误的是( )
A. B. C. D.
师生活动:教师选出答案,学生判断正误并说明理由.
答案:①A ②D ③C ④D
(3)判断正误,正确的打“√”,错误的打“×”
①∵ ∴ ( ) ②∵ ∴ ( )
③∵ ∴ ( ) ④若,则 ∴,( )
学生活动:一名学生说出答案,其他学生判断正误.
答案:①√ ②× ③√ ④×
【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.
(四)总结、扩展
1.本节重点:
(1)掌握不等式的三条基本性质,尤其是性质3.
(2)能正确应用性质对不等式进行变形.
2.注意事项:
(1)要反复对比不等式性质与等式性质的异同点.
(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.
3.考点剖析:
不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.
八、布置作业
(一)必做题:P61 A组4,5.
(二)选做题:P62 B组1,2,3.
参考答案
(一)4.(1) (2) (3) (4)
5.(1) (2) (3) (4)
(5) (6)
(二)1.(1) (2) (3)
2.(1) (2) (3) (4)
3.(1) (2) (3)
九、板书设计
不等式和它的基本性质(二)
一、不等式的基本性质
1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.
若 ,则 , .
2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若 , ,则 .
3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若 , ,则 .
二、应用
例1 解(1)(2)
(3)(4)
例2 解(1)(2)
(3)
三、小结
注意不等式性质3的应用.
四、背景知识与课外阅读
盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的 ,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?
不等式的性质教案 篇5
教学目标:
1.理解不等式的性质,掌握不等式的解法.
2能熟练的应用不等式的基本性质进行不等式的变形.
教学重点:
不等式的性质和解法.
教学难点:不等号方向的确定.
教法:演示法、
学法:类比法
复习:
1.什么是不等式?不等式的解?
用“>”或“<”表示大小关系的式子叫做不等式.
使不等式成立的未知数的值叫做不等式的解
2.什么是不等式解集?
能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.
一、情境引入
(1)观察:用“<”或“>”填空,并找一找其中的规律.
5>3 5+2___>_3+2
5-2__>__3-2
(2) –1<3 -1+2__<__3+2
-1-3__<__3-3
(3) 6>2 6×3__>__2×3
6 ÷ 2___>_ 2 ÷ 2
(4) –2<3 (-2)×6__<__3×6
(-2)÷ 2 __<__3 ÷ 2
当不等式的两边乘以同一个正数时,不等号的方向不变 .
(5) 6>2 6 x(- 2) ___<_ 2 x(- 2)
6 ÷(-2)___<_2 ÷(-2)
(6) –2<4 (-2) x(- 2) __>__ 4 x(-2)
(-2) ÷(-2)_>___4 ÷(-2)
当不等式的两边除以同一个负数时,不等号的方向改变
二、互动新授
不等式性质1:
不等式两边加(或减)同一个数(或式子,不等号的方向不变。a >b,那么a±c>b±c
不等式的性质教案 篇6
探究活动
能得到什么结论
题目已知且,你能够推出什么结论?
分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。
思路一:改变的范围,可得:
1.且;
2.且;
思路二:由已知变量作运算,可得:
3.且;
4.且;
5.且;
6.且;
7.且;
思路三:考虑含有的数学表达式具有的性质,可得:
8.(其中为实常数)是三次方程;
9.(其中为常数)的图象不可能表示直线。
说明从已知信息能够推出什么结论?这是我们经常需要思考的问题,这里给出的都是必要非充分条件,读者可以考虑是否能够写出充要条件;另外,运用推出关系的传递性,在推出结论的基础上进一步进行推理,还可得出很多结果,请读者考虑.
探究关系式是否成立的问题
题目当成立时,关系式是否成立?若成立,加以证明;若不成立,说明理由。
解:因为,所以,所以,
所以,
所以或
所以或
所以或
所以不可能成立。
说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的分析,不仅说明结论不成立,而且得出,必须同时大于1或同时小于1的结论。
探讨增加什么条件使命题成立
例适当增加条件,使下列命题各命题成立:
(1)若,则;
(2)若,则;
(3)若,,则;
(4)若,则
思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。
解:(1)
(2)。当时,
当时,
(3)
(4)
引申发散对命题(3),能否增加条件,或,,使其成立?请阐述你的理由。
不等式的性质教案 篇7
教学目标:
知识与技能:
1. 感受生活中存在的不等关系,了解不等式的意义。
2. 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教学过程:
一、复习导入新课
1.探索并掌握不等式的基本性质,并运用它对不等式进行变形.
2.理解不等式性质与等式性质的联系与区别.
3.提高观察、比较、归纳的能力,渗透类比的思想方法.
二、探求新知,讲授新课
第一部分:学前练习
1. -7 ≤ -5, 3+4>1+4
5+3≠12-5, x ≥ 8
a+2>a+1, x+3 <6
(1)上述式子有哪些表示数量关系的符号?这些符号表示什么关系?
(2)这些符号两侧的代数式可随意交换位置吗?
(3)什么叫不等式?
第二部分:探究新知:
1.商场A种服装的价格为60元,B种服装的价格为80元
(1)两种服装都涨价10元,哪种服装价格高?涨价15元呢?
(2)两种服装都降价5元,哪种服装价格高?降价15元呢?
(3)两种服装都打8折出售,哪种服装价格高?
2.已知 4 > 3,填空:
4×(-1)——3 ×(-1)
4×(-5)——3 ×(-5)
第三部分:不等式的基本性质的探究
1:填空: 60 < 80
60+10 80+10
60-5 80-5
60+a 80+a
性质1,不等式的两边都加上(或减去)同一个整式,不等号的方向不变.
2:填空(1):60 < 80
60 × 80 ×
填空(2): 4 > 3
4×5 3×5
4÷2 3÷2
性质2,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3:填空: 4 > 3
4×(-1) 3×(-1)
4×(-5) 3×(-5)
4÷(-2) 3÷(-2)
性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
三、小结不等式的三条基本性质
1. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
2. 不等式两边都乘(或除以)同一个正数,不等号的方向不变;
3.*不等式两边都乘(或除以)同一个负数,不等号的方向改变 ;
与等式的基本性质有什么联系与区别?
四、典型例题
例1.根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:
(1) x-2< 3 (2) 6x< 5x-1
(3) 1/2 x>5 (4) -4x>3
解:(1)根据不等式基本性质1,两边都加上2,
得: x-2+2<3+2
x<5
(2)根据不等式基本性质1,两边都减去5x,
得: 6x-5x<5x-1-5x
x<-1
例2.设a>b,用“<”或“>”填空:
(1)a-3 b-3 (2) -4a -4b
解:(1) ∵a>b
∴两边都减去3,由不等式基本性质1
得 a-3>b-3
(2) ∵a>b,并且-4<0
∴两边都乘以-4,由不等式基本性质3
得 -4a<-4b
五、变式训练:
1、已知x<y,用“<”或“>”填空。
(1)x+2 y+2 (不等式的基本性质 )
(2) 3x 3y (不等式的基本性质 )
(3)-x -y (不等式的基本性质 )
(4)x-m y-m (不等式的基本性质 )
2、若a-b<0,则下列各式中一定成立的是( )
>b >0
C. D.-a>-b
3、若x是任意实数,则下列不等式中,恒成立的是( )
>2x ×2>2×2
+x>2 +x2>2
六 、小结
七、作业的布置
八、教学反思
本节课通过复习等式的基本性质,类比得出不等式的基本性质雏形。教学中问题的设置通过与等式的基本性质相对比,引导学生自己先猜想不等式基本性质、再通过具体数值验算性质、最后自己总结归纳完善性质定理并能用字母表示出来。在接下来的讲解例题与练习的过程中,每一步变形的依据都能够集体回答或个别举手回答正确,黑板上的演示过程也十分规范。在整个教学过程中,学生始终处于主导地位,不等式的基本性质主要由学生自己推导得出。
以上就是小编分享的有关于不等式的性质教案内容,希望以上分享能对各位有所帮助,教案是一个很重要的东西,谢谢大家关注本网站,祝大家生活愉快。
不等式的性质教案 篇8
【教学重点与难点】
教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.
教学难点:正确应用不等式的三条基本性质进行不等式变形.
【教学目标】
1、 探索并掌握不等式的基本性质
2、 会用不等式的基本性质进行化简
【教学方法】
通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
【教学过程】
一、创设情境 复习引入
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)
问题:1、什么是等式?等式的基本性质是什么?
2、 什么是不等式?
3、 用“>”或“<”填空.
(1)7>3 (2)-1<3
7+5 3+5 -1+2 3+2
7-5 3-5 -1-4 3-4
(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)
二、师生互动,探索新知
1、不等式的基本性质
问题1:观察思考问题3,猜想出不等式的性质
先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.
观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:
不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.
比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:
不等式基本性质2 不等式两边乘(或除以)同一个不为零的正数,不等号的方向不变.
不等式基本性质3 不等式两边乘(或除以)同一个不为零的负数,不等号的’方向改变.
2、图形演示
通过PPT用图形演示不等式的基本性质,让学生更加清楚地认识不等式的基本性质。
3、拓展及应用
提问:不等式有对称性吗?
不等式有传递性吗?
【学生通过讨论能够比较容易得出结论:不等式有对称性,但要注意其不等号方向的变化;不等式也有传递性,但要注意的是同向传递性。】
三、巩固训练,熟练技能:
1、(1) a – 3____b – 3;
(2) a÷3____b÷3
(3) ____;
(4) -4a____-4b
(5) 2a+3____2b+3;
(6) (m2+1) a ____ (m2+1)b (m为常数)
【本题目采用提问的方式,因为内容相对简单,所以可以迅速得到结论。要让提问者说清楚答案,并说明利用不等式的性质几来进行判定的。】
2、判断下列各题的推导是否正确?为什么
(1)因为>,所以-<-;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
【学生口答,并说明为什么。本题重点是第5小题,要引导学生总结出a的取值会影响到答案。当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.当a<0时,3a<2a.(不等式基本性质3) 】
3、独立完成习题
学生自己完成以下题目,之后进行集体讲解。
(1)如果x-5>-1,那么______________________,得:x>4
(2)如果-2x>3,那么那么______________________,得X=______
四、小结
师生共同小结本节课所学重点,不等式的基本性质的具体内容。
五、作业、
习题
不等式的性质教案 篇9
一、课程内容剖析:
1、教材内容影响力和功效
这节课是数学(基本控制模块)上册第二章第三节《一元二次不等式》。从内容上看它是大伙儿初中学过的一元一次不等式的扩宽,此外它也与一元二次方程、二次函数正中间联系紧密联系,牵涉到的专业知识方面较多。从观念方面看,这节课突显本现了数形结合观念。另外一元二次不等式是处理函数定义域、值域等难题的关键专用工具,因而这节课在全部初中数学中具备较关键的影响力和功效。
2、课程目标
专业知识总体目标:正确认识一元二次不等式、一元二次方程、二次函数的关联。熟练掌握一元二次不等式的解法。
能力总体目标:塑造数形结合观念、抽象思维能力和形象思维能力。
观念总体目标:在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。
感情总体目标:根据实际情境,使学生感受数学与实践活动的密切联系,体会数学风采,激起学生求知冲动。
3、重点难点
重要:一元二次不等式的解法。
难点:一元二次方程,一元二次不等式与二次函数的关系。
二、学生状况剖析:
大家的学生是在学了一元一次不等式,一元一次方程、一元一次涵数,一元二次方程的基本上学习培训一元二次不等式。但大多数数学生的基本都并不是非常好,解一元二次方程有一定的艰难。
三、课堂教学环境分析:
教学环境应包含和睦的师生关系、多媒体系统的有效运用、优良的课堂教学机构、有效的难题情境。构建和睦的师生关系有益于提升学习兴趣,大家院校要创建和睦的师生关系是必须花许多思绪的,非常是学生就业班的同学们,且要有一个非常长的融入時间。大家院校的每名教师都是有手提电脑,每间课室都是有宽屏电子器件显示屏,教师都能灵活运用多媒体设备的应用。应用信息化教学效果非常的好、学生非常容易了解、学习培训的主动性高。上课的时候较为留意构建适合的难题情境,实际效果会非常好,学生从日常生活具体考虑,回应所提的难题,不经意间学了新的专业知识,她们不容易觉得到学习培训疲惫,反倒能积极地学习培训。
四、课程目标剖析:
专业技能与专业能力:正确对待一元二次不等式、一元二次方程、二次函数的关系。熟练掌握一元二次不等式的解法。
全过程与方式 :根据看图像找解集,塑造学生从从形到数的转换能力,从实际到抽象性、从独特到一般的梳理归纳能力;根据对难题的思索、研究、沟通交流,塑造学生优良的数学沟通交流能力,提高其数形结合的逻辑思维观念。在课堂教学中渗入由实际到抽象性,由独特到一般,类比猜测、等价转换的数学观念方式 。
感情心态与价值观念:根据实际情境,使学生感受数学与实践活动的密切联系,激起学生学习培训科学研究一元二次不等式的主动性和对数学的感情,使学生充足感受获得专业知识的取得成功体会;在研究、探讨、沟通交流全过程中塑造学生的协作观念和团队意识,使其培养认真细致的治学心态和优良的思维习惯。
不等式的性质教案 篇10
知识与技能:
理解并掌握不等式的三个性质,能运用性质,用不等号连接某些代数式,进行不等式的变形。
过程与方法:
经历自主学习,小组交流合作学习,以及课堂上的成果汇报,培养学生自主分析问题,解决问题的能力,养成与他人交流,共同学习,共同进步的学习方法。
情感态度与价值观:在自主分析,交流合作,成果汇报的活动中,感受学习的乐趣,体会与人合作的快乐。
教学难点 :
正确运用不等式的性质。
教学重点:
理解并掌握不等式的性质3。
教学过程:
一、创设情境 引入新课
利用一台平衡的天平提出问题,引入新课
1、给不平衡的天平两边同时加入相同质量的砝码,天平会有什么变化?
2、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?
3、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。
二、合作交流 探究新知
1、问题情景:数学老师比 语文老师年龄小。
1、10年后谁的年龄大?
2、20年之后呢?
3、5年之前呢?
假设数学,语文两位老师的年龄分别为a,b ,则a < b
a+10 < b+10
a+20 < b+20
a—5 < b—5
2、探索与发现
一组: 已知5>3,则5+2 3+2
5—2 3—2
二组:已知—1<3则— 1+23+2
—1—33—3
想一想不等号的方向改变吗?
3、归纳:不等式的性质1:
不等式两边都加(或减去)同一个数(或式子),不等号的方向不变
如果a<b,那么a+c
如果a>b,那么a+c >b+c, a—c >b—c。
不等号方向不改变!
4、大胆猜想
不等式两边都加(或减去)同一个数,不等号方向不改变
不等式两边都加(或减去)同一个数,不等号方向不改变
不等式两边都乘(或除以)同一个数(不为零),
不等号的方向呢?
5、探索与发现
已知4<6,则
一组:4×2 < 6×2; 二组: 4×(—2) > 6×(—2);
4÷2<6÷2;4÷(—2)>6÷(—2)。
思考不等号方向改变吗?
不等式两边都乘(或除以)一个不为零的数,不等号方向改不改变和什么有关?
6、不等式的性质2:
不等式两边都乘(或除以)同一个正数,不等号的方向不变。
如果a>b, 且c>0,那么ac>bc,
如果a0,那么ac < bc,
7、不等式的性质3:
不等式两边都乘(或除以)同一个负数,不等号的方向改变。
如果a>b, 且c<0,那么ac 如果a 三、巩固提高 拓展延伸 例1:判断下列各题的推导是否正确?为什么(学生口答) (1)因为7。5>5。7,所以—7。5<—5。7; (2)因为a+8>4,所以a>—4; (3)因为4a>4b,所以a>b; (4)因为—1>—2,所以—a—1>—a—2; (5)因为3>2,所以3a>2a. (1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1. (3)正确,根据不等式基本性质2. (4)正确,根据不等式基本性质1. (5)不对,应分情况逐一讨论. 当a>0时,3a>2a.(不等式基本性质2) 当 a=0时,3a=2a. 当a<0时,3a<2a.(不等式基本性质3) 考考你! 0>4,哪里错了? 已知m>n,两边都乘以4,得4m>4n, 两边都减去4m,得0>4n—4m, 即0>4(n—m), 两边同时除以(n—m),得0>4。 等式与不等式的性质 1。不等式的三个性质。 2。等式与不等式的性质对比。 先前后比较,再定不等号 四、总结归纳 1、等式性质与不等式性质的不同之处; 2、在运用“不等式性质3″时应注意的问题. 学生通过总结,可以帮助自己从整体上把握本节课所学知识培养良好的学习习惯,也为下节课学好解不等式打下基础。 五、布置作业 1、必做题:教科书第134页习题9。1第4、5题 2、选做题:教科书第134页习题9。 1第7题.
上一篇:适合中学生的体育活动2024体育教案最佳参考【汇编3篇】
下一篇:返回列表