不等式的基本性质教学设计精彩4篇

网友 分享 时间:

【前言导读】此篇优秀范文“不等式的基本性质教学设计精彩4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

不等式的基本性质教学设计【第一篇】

(一)教学目标

1.知识与技能:使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容。

2.过程与方法:以问题方式代替例题,学习如何利用不等式研究及表示不等式,利用不等式的有关基本性质研究不等关系;

3.情态与价值:通过学生在学习过程中的感受、体验、认识状况及理解程度,注重问题情境、实际背景的的设置,通过学生对问题的探究思考,广泛参与,改变学生学习方式,提高学习质量。

(二)教学重、难点

重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。

难点:用不等式(组)正确表示出不等关系。

(三)教学设想

[创设问题情境]

问题1:设点A与平面的距离为d,B为平面上的任意一点,则d≤。

问题2:某种杂志原以每本元的价格销售,可以售出8万本。根据市场调查,若单价每提高元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?

分析:若杂志的定价为x元,则销售的总收入为万元。那么不等关系“销售的总收入不低于20万元”可以表示为不等式≥20

问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。怎样写出满足上述所有不等关系的不等式呢?

分析:假设截得500mm的钢管x根,截得600mm的钢管y根。

根据题意,应有如下的不等关系:

(1)解得两种钢管的总长度不能超过4000mm;

(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;

(3)解得两钟钢管的数量都不能为负。

由以上不等关系,可得不等式组:

[练习]第82页,第1、2题。

[知识拓展]

设问:等式性质中:等式两边加(减)同一个数(或式子),结果仍相等。不等式是否也有类似的性质呢?

从实数的基本性质出发,可以证明下列常用的不等式的基本性质:

(1)

(2)

(3)

(4)

证明:

例1讲解(第82页)

[练习]第82页,第3题。

[思考]:利用以上基本性质,证明不等式的下列性质:

[小结]:1.现实世界和日常生活中存在着大量的不等关系;

2.利用不等式的有关基本性质研究不等关系;

[作业]:习题(第83页):(A组)4、5;(B组)2.

不等式的基本性质教学设计【第二篇】

教学目的

掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。

教学过程

师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?

第一组:1+2=3; a+b=b+a; S =ab; 4+x =7.

第二组:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4.

生:第一组都是等式,第二组都是不等式。

师:那么,什么叫做等式?什么叫做不等式?

生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。

师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?

生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式。

师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

(回答)用小于号“<”或大于号“>”填空。

(1)7 ___ 4;(2)- 2____6;(3)- 3_____ -2;(4)- 4_____-6

练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?

(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?

(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?

生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!

师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?

生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。

练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变:

7>4;-2<6;-3<-2;-4>-6。

师:现在我们可以归纳出不等式的基本性质,一般地说

不等式的基本性质教学设计【第三篇】

知识与技能:

理解并掌握不等式的三个性质,能运用性质,用不等号连接某些代数式,进行不等式的变形。

过程与方法:

经历自主学习,小组交流合作学习,以及课堂上的成果汇报,培养学生自主分析问题,解决问题的能力,养成与他人交流,共同学习,共同进步的学习方法。

情感态度与价值观:在自主分析,交流合作,成果汇报的活动中,感受学习的乐趣,体会与人合作的快乐。

教学难点 :

正确运用不等式的性质。

教学重点:

理解并掌握不等式的性质3。

教学过程:

一、创设情境 引入新课

利用一台平衡的天平提出问题,引入新课

1、给不平衡的天平两边同时加入相同质量的砝码,天平会有什么变化?

2、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?

3、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。

二、合作交流 探究新知

1、问题情景:数学老师比 语文老师年龄小。

1、10年后谁的年龄大?

2、20年之后呢?

3、5年之前呢?

假设数学,语文两位老师的年龄分别为a,b ,则a < b

a+10 < b+10

a+20 < b+20

a—5 < b—5

2、探索与发现

一组: 已知5>3,则5+2 3+2

5—2 3—2

二组:已知—1<3则— 1+23+2

—1—33—3

想一想不等号的方向改变吗?

3、归纳:不等式的性质1:

不等式两边都加(或减去)同一个数(或式子),不等号的方向不变

如果a<b,那么a+c

如果a>b,那么a+c >b+c, a—c >b—c。

不等号方向不改变!

4、大胆猜想

不等式两边都加(或减去)同一个数,不等号方向不改变

不等式两边都加(或减去)同一个数,不等号方向不改变

不等式两边都乘(或除以)同一个数(不为零),

不等号的方向呢?

5、探索与发现

已知4<6,则

一组:4×2 < 6×2; 二组: 4×(—2) > 6×(—2);

4÷2<6÷2;4÷(—2)>6÷(—2)。

思考不等号方向改变吗?

不等式两边都乘(或除以)一个不为零的数,不等号方向改不改变和什么有关?

6、不等式的性质2:

不等式两边都乘(或除以)同一个正数,不等号的方向不变。

如果a>b, 且c>0,那么ac>bc,

如果a0,那么ac < bc,

7、不等式的性质3:

不等式两边都乘(或除以)同一个负数,不等号的方向改变。

如果a>b, 且c<0,那么ac

如果a

三、巩固提高 拓展延伸

例1:判断下列各题的推导是否正确?为什么(学生口答)

(1)因为7。5>5。7,所以—7。5<—5。7;

(2)因为a+8>4,所以a>—4;

(3)因为4a>4b,所以a>b;

(4)因为—1>—2,所以—a—1>—a—2;

(5)因为3>2,所以3a>2a.

(1)正确,根据不等式基本性质3.

(2)正确,根据不等式基本性质1.

(3)正确,根据不等式基本性质2.

(4)正确,根据不等式基本性质1.

(5)不对,应分情况逐一讨论.

当a>0时,3a>2a.(不等式基本性质2)

当 a=0时,3a=2a.

当a<0时,3a<2a.(不等式基本性质3)

考考你! 0>4,哪里错了?

已知m>n,两边都乘以4,得4m>4n,

两边都减去4m,得0>4n—4m,

即0>4(n—m),

两边同时除以(n—m),得0>4。

等式与不等式的性质

1。不等式的三个性质。

2。等式与不等式的性质对比。

先前后比较,再定不等号

四、总结归纳

1、等式性质与不等式性质的不同之处;

2、在运用“不等式性质3"时应注意的问题. 学生通过总结,可以帮助自己从整体上把握本节课所学知识培养良好的学习习惯,也为下节课学好解不等式打下基础。

五、布置作业

1、必做题:教科书第134页习题9。1第4、5题

2、选做题:教科书第134页习题9。 1第7题.

教学目标【第四篇】

1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;

2、初步体会不等式与等式的异同;

3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性。

22 1239387
");