数列教案实用3篇
【路引】由阿拉题库网美丽的网友为您整理分享的“数列教案实用3篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
数列教案1
一、利用数列知识的生活性,创设高中生自主探究的教学氛围
利用数列知识与现实的紧密联系性,设置现实生活情境,让学生在适宜的生活情境中,自主探究能动情感得到激发,主动开展探究数列知识要点和问题案例解答过程。
如在“等差数列的前n项和”教学活动中,教师在整节课教学活动中,准备采用自主探究式教学策略,为保证该教学策略的顺利实施,教师在教学伊始,就奠定情感“基调”,在认真研析该节课知识内涵的基础上,创设了生活链接“在我国古代,数字9是数字之极,代表着尊贵之意,所以在中国古代皇家建筑中包含有许多与9有关的设计。例如,北京天坛圜丘的表面就由扇形的石板铺就而成,最高一层的重心是一块天心石,围绕它的第一圈是9块石板,从第二圈开始,每一圈比前一圈多9块,一共有9圈,请问第9圈有多少块石板?”学生在教师创设的生活性情境案例中,带着情感、带着问题、带着疑惑,主动探究等差数列的前n项和公式的推导、性质等重点、难点内容,保证了自主探究活动有序开展的“情感性”。
二、找寻数列问题的规律性,传授高中生自主探究的学习策略
在讲解“等差数列的通项公式与递推公式的联系”知识点内容时,教师在运用自主探究式教学策略时,先向学生设置问题案例“数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N*),求(1)数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn;(3)设bn=11n(12-an)(n∈N*),Tn=b1+b2+ …+bn(n∈N*),是否存在最大整数m,使得对于任意n∈N*,均有Tn>m132成立?若存在,求出m的值,若不存在,请说明理由。”让学生进行自主探究问题活动,学生在探知问题活动中,通过对问题内容及条件的思考分析,认识到该问题案例是考查综合应用所学的等差数列知识进行问题解答的能力。教师通过学生的探析活动,发现,学生解答该问题的难点主要有两个,一个是如何去掉Sn中的绝对值符号,另一个是该问题中的第三问。此时,教师引导学生可以采用先假设存在,然后作出正确的推理论证。学生结合教师的指点,进行该问题的解答活动。最后,教师根据学生的解题过程,与学生一起进行解题策略的总结,指出解答等差数列的通项公式与递推公式的联系方面的问题案例时,主要是利用等差数列的定义以及前n项和公式解题,解题时要注意数列中从哪一项开始为负数,再去绝对值符号时加负号,在求Tn时利用了数列求和的裂项法把11n(n+1)拆开,解题时要注意一定的技巧性。在上述过程中,教师在学生自主探究解析问题中,通过适当引导,使学生逐步掌握进行问题解答的策略方法,从而为深入开展自主探究活动打下了方法基础。
三、挖掘数列案例的思想性,提升高中生自主探究的数学思想
问题设p,q为实数,α,β是方程x2-px+q=0的两个实根,数列{xn}满足x1=p,x2=p2-q,xn=pxn-1-qxn-2(n=3,4,…).(1)证明:α+β=p,αβ=q;(2)求数列{xn}的通项公式。
解析(1)由求根公式,不妨设α
α=p-p2-4q12,β=p+p2-4q12
所以α+β=p-p2-4q12+p+p2-4q12=p
(2)当n≥3时,设xn-sxn-1=t(xn-1-sxn-2),则xn=(s+t)xn-1-stxn-2,由xn=pxn-1-qxn-2得s+t=p,
st=q。消去t,得s2-ps+q=0,所以s是方程x2-px+q=0的根,由题意可知,s1=α,s2=β。
①当α≠β时,此时方程组s+t=p,
st=q的解记为s1=α,
t1=β或s2=β,
t2=α。所以xn-αxn-1=β(xn-1-αxn-2),xn-βxn-1=α(xn-1-βxn-2),即{xn-t1xn-1}、{xn-t2xn-1}分别是公比为s1=α,s2=β的等比数列,由等比数列性质可得xn-αxn-1=(x2-αx1)βn-2,xn-βxn-1=(x2-βx1)αn-2,两式相减,得(β-α)xn-1=(x2-αx1)βn-2-(x2-βx1)αn-2。因为x2=p2-q,x1=p,所以x2=α2+β2+αβ,x1=α+β, 所以(x2-αx1)βn-2=β2βn-2=βn,(x2-βx1)αn-2=α2αn-2=αn, 所以(β-α)xn-1=βn-αn,即xn-1=βn-αn1β-α,xn=βn+1-αn+11β-α。
②当α=β时,即方程x2=px+q=0有重根,则p2-4q=0,即(s+t)2-4st=0,得(s-t)2=0,所以s=t。不妨设s=t=α,由①可知xn-αxn-1=(x2-αx1)βn-2。因为α=β,所以xn-αxn-1=(x2-αx1)αn-2=αn,即xn=αxn-1+αn。等式两边同时除以αn,得xn1αn=xn-11αn-1+1,即xn1αn-xn-11αn-1=1,所以数列{xn1αn}是以1为公差的等差数列,所以xn1αn=x11α+(n-1)×1=2α1α+n-1=n+1,所以xn=nαn+αn。
综上所述,xn=βn+1-αn+11β-α
nαn+αn(α≠β),
读书破万卷下笔如有神,以上就是差异网为大家整理的3篇《数列教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在差异网。
数列教案2
在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。
教学背景
所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。
教学设计
一、教材分析
1.教学内容
“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2.地位与作用
本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。
二、目标分析
1.教学目标
(1)掌握等差数列的前n项和公式及推导过程。
(2)会简单运用等差数列的前n项和公式。
(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
2.教学重点、难点
(1)重点:等差数列前n项和公式的推导和应用。
(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。
三、教学模式与教法、学法
本课采用“探究―发现”教学模式。
教师的教法:突出活动的组织设计与方法的引导。
学生的学法:突出探究、发现与交流。
四、教学活动设计
1.新课引入
创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。这个V形架上共放着多少支铅笔?
问题就是(板书)“1+2+3+4+…+100=?”
设计意图:利用实际,生活引入新课,形象直观。
2.探索公式
介绍数学家高斯,然后提出问题:高斯是如何快速计算1+2+3+4+…+100?设等差数列{an}前n项和为Sn,则:Sn=a1+a2+…+an-1 +an
问题1:
老师:利用高斯算法如何求等差数列的前n项和公式?
学生:1+100=101,2+99=101,…50+51=101,所以原式=50 (1+101)=5050
学生:将首末两项配对,第二项与倒数第二项配对,以此类推,每一对的和都相等,并且都等于(a1+an)
学生:不一定,需要对n取值的奇偶进行讨论。
当n为偶数时刚好配对成功。
通过对n取值的讨论,得到了前n项和求和公式。但是对n讨论麻烦了,能否有更好的方法求前n项和公式呢?
问题2:如何用倒置的思想求等差数列前n项和呢?
Sn=a1+a2+…+an-1+an
3.例题选讲
例1:计算
(1)1+2+3+…+n (2)1+3+5+…+(2n-1)
(3)2+4+6+…+2n (4)1-2+3-4+5-6+…+(2n-1)-2n
设计意图:学生自己阅读教材,体会教材的解法是如何运用求和公式的。
……
4.课堂总结
本环节由学生自主归纳、总结本节课所学习的主要内容,教师加以补充说明。
(1)回顾从特殊到一般,一般到特殊的研究方法。
(2)体会等差数列的基本元表示方法,倒序相加的算法,及数形结合的数学思想。
(3)掌握等差数列的两个求和公式及简单应用。
5.课后作业
教材44页:1、2、5、6
数列教案3
一、编写导学案首先要紧紧围绕着教材
在编写前教师一定要经过大量的阅读和准备,不单是写写教案那么简单,自己还必须独立深入认真钻研书和教参。第一次备课不参照任何名家教案或参考书,只看教科书,想一想,看着例题和试一试,练一练,自己想怎么设计课。第二次对准自己备的课参照别人的备课,看看哪些是别人想到而自己没有思考到的,想想别人为什么要这样设计,取别人的智慧补充自己的教学设计。第三次交给学科组集体讨论定稿。第四次在上课后,根据课堂的实际情况写出课后反思,调整自己的教学策略,敲定教学细节处理。这样的备课能促进我们独立思考,不断提高能力。而不是像有的导学案,基本上就是将几个简单题目罗列起来,没有导学案使用说明,没有方法指导,没有知识分层,没有拓展探究,效果可想而知。如四年级下册《确定位置》导学案编写片段1:
学习过程:
自学课本98页例1
1.指一指:在座位图上分别指出列和行,数一数一共有(_______)列和(_______)行。
2.涂一涂:(1)在圆圈图上,找出第一列,并用蓝笔涂实;
(2)再找出第1行,用红笔涂实;
(3)请按顺序再数一数列和行。
通过指一指,先数一数共有列、行;再涂一涂第1列,第一行;最后按顺序数一数列和行。设计要点:(1)方法指导:指一指、涂一涂、按顺序数一数;(2)知识层层深入:①数一共的列和行;②按顺序数列和行。这样的设计既有方法指导,又有知识分层,效果可想而知。
二、编写导学案要以学生为主题
对同一教材的内容,师生的年龄、认知水平和生活经验都有巨大差异,必然对教材内容的实际解读相差巨大。因此备课时,教师要认真研读教材、准确理解编者意图,不但要站在教师的角度想全面,还要设身处地站在中学生的角度读教材,并提出疑问。站在学生认知的角度,站在文本整体的高度,体察学生阅读中可能遇到的问题和需要具备的方法,分析应该落实的知识、训练重点,找到三维目标的交汇点,在心里和学生先期对话,彻底吃透教材,能够对教材内容举一反三,变式练习层层递进。然后再统筹安排在教学中学生想学什么?学生学什么、怎样学?片段2:
3.小军的位置在第_______列,第_______行。用数对表示是(_______,_______)。
小组交流。
本课是通过统一观察角度、按同样的顺序数,确定位置。但从学生的角度,即便不统一,也能说得清楚,只是复杂点唆点。为什么课本里要安排这课呢?在导学案片段2例就深刻体现出了这一点。统一的观察角度、按同样的顺序数,确定在第4列,第3行。清楚、不唆。更深一层次,用数对表示是(4,3),更显简洁,准确。既有了知识分层,又拓展了探究,更体现了数学的简洁性、准确性。
三、编写导学案要体现数学思想
教材的编排有两条贯穿始终的主线:一条是明线,即知识的联系;另一条是暗线,即掩藏在知识背后的数学思想方法。如:在教学《确定位置》时,明线是:用数对表示位置。暗线是:数学的严谨、准确、简洁性。紧扣两条线索,帮助学生统一确定位置的方法,体会数学的准确、简洁之美。学生经历了认知的全过程,就会形成良好的认知结构。仔细考虑课堂教学中的细节问题,对于课堂上学生可能出现的认知偏差要有充分准备。
四、编写数学“导学案”的模块
不同的课型导学案所包含的基本模块和要求也不太一样,总的来说,大致包含如下一些环节。
1.学习目标。它是整篇导学案的灵魂,其他环节均为它服务。它的设计应包含三层目标:知识目标、能力目标、情感目标,目标要简洁、清晰、准确、全面、具体。最重要的是从学生的角度拟定。
2.学习过程。各种课型有所不同,但问题(知识模块)设计要遵循知识问题化、问题层次化的原则。教师给予学生学习每节课具体的、有针对性的、方法上的指导。引导学生回顾与本节有关的、有帮助的旧知,以便更好地理解和掌握新知,还要根据所学部分的核心内容和知识主线设计2~3个有思维价值的问题。
3.课内练习。对所学知识的进一步升华和深化,要求较高,可以培养学生运用知识解决问题的能力。也要有当堂检测,检验学生的学习效果和导学案的实施效果,总结经验,吸取教训;当堂检测可另附页。题量控制在3~4个,时间为5~10分钟。
4.学生小结。对本节所学知识、方法、规律的总结,可在教师的启发、引导下进行。
上一篇:禁毒主题班会教案实用5篇
下一篇:五年级上册科学教学计划精编5篇