初中一次函数说课稿【参考4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“初中一次函数说课稿【参考4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

一次函数说课稿【第一篇】

一、教材分析

1、教材的地位和作用

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明

对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。

三、教学过程

(一)感知身边数学

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣

1、探究一次函数与二元一次方程的关系

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系

[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分元的价格按上网时间计费;方式B除收月基费20元外再以每分0 。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦

1、抢答题

2、旅游问题

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地

1、数学日记

2、布置作业

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。

四、教学设计反思

1、贯穿一个原则以学生为主体的原则

2、突出一个思想数形结合的思想

3、体现一个价值数学建模的价值

4、渗透一个意识应用数学的意识

《一次函数与二元一次方程(组)》教案

教学目标

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程

(一)引入新课

多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟元的价格按上网时间计费;方式B除收月基费20元外再以每分钟元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课

1、探究一次函数与二元一次方程的关系

填空:二元一次方程 可以转化为 ________。

思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

2、探究一次函数图像与二元一次方程组的关系

(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式

例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分元的价格按上网时间计费;方式B除收月基费20元外再以每分0 。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?

解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。

解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题

(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。

(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。

5、旅游问题

古城荆州历史悠久,文化灿烂。

今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?

一次函数说课稿【第二篇】

一 、说教材

1、 地位和作用

本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。

2、教学目标

知识与技能目标:

(1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。

(2)感知不等式、函数、方程的不同作用与内在联系。

过程与方法目标:

让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来, 通过自主交流合作解决问题,充分发挥学生的主体作用。

情感与态度目标:

让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。

3、 教学重点、难点

教学重点:理解一次函数与一元一次不等式的关系;

教学难点:利用函数图象确定一元一次不等式的解集。

二、 说教法

1、 学情分析

我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。

2、教学方法

鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。

三、说学法

1、学生自主探索交流,思考问题,获取知识,真正成为学习的主体。

2、学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能 。

四、说教学程序

(一)创设问题情境,探究新知

兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。

游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。

教师提问:

你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走?

在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗?

设计游戏的目的有以下几点:

(1)游戏的内容便于学生列出函数关系式y=2x-4;

(2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。

(二)探讨归纳,讲解新知

(1) 解不等式 2x-4>0

(2) 观察函数y=2x-4图象,当自变量x为何值时,函数值大于0?

这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。

所以,首先让学生画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y0时相应的x的值。

通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。

最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。

(1) 把一元一次不等式转化为ax+b>0或ax+b<0的形式;

(2) 画出一次函数图象;

(3) 一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。

(三)应用新知

例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。

例2:用画函数图像的方法解不等式5x+4<2x+10。

方法1:原不等式化为3x-6﹤0, 画出直线y=3x-6。可以看出,当x<2时这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2

方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x<2时,对于同一个x,直线y=5x+4在直线y=2x+10上相应点的下方。这时5x+4<2x+10,所以不等式的解集为x<2。

总结:以上两种方法其实都是把解不等式转化为比较直线上的点的位置的高低。

从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系, 直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。

(四)随堂练习

1自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?

(1)y=0; (2)y=-7;

(3)y>0; (4)y<2.

设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。

2 利用函数图象解出x:

(1)6x-4=3x-2; (2)6x-4<3x-2.

设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。

(五)小结与作业

1、 归纳反思

2、 利用一次函数图像求一元一次不等式解集的步骤

作业布置

必做题:习题第3、4题

选做题:已知y1=-x+3, y2=3x-4,求x取得何值时y1>y2?

自我反思

应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。

《一次函数》说课稿【第三篇】

一、说教材

1、地位和作用

本节课是建立在学生已经具备了一元一次方程、一元一次不等式及二元一次方程组知识的基础上,用函数的观点对它们重新进行分析。这不是简单的复习回顾,而是站在更高的角度进行动态的分析,引导学生从整体中把握部分。其中渗透了数形结合的思想,为后继学习奠定了基础。

2、教学目标

知识与技能目标:

(1)通过函数图象,逐步体会一次函数与一元一次不等式的内在联系,培养学生数形结合的思想。

(2)感知不等式、函数、方程的不同作用与内在联系。

过程与方法目标:

让学生自己根据题意列函数关系式,作出函数图象,并能把函数关系式或函数图象与一元一次不等式联系起来,通过自主交流合作解决问题,充分发挥学生的主体作用。

情感与态度目标:

让学生唱主角,老师任导演,增强学生学数学、用数学、探索数学奥秘的愿望,体验成功的喜悦。

3、教学重点、难点

教学重点:理解一次函数与一元一次不等式的关系;

教学难点:利用函数图象确定一元一次不等式的解集★★。

二、说教法

1、学情分析

我现在所带班级学生整体学习能力处于中等水平,学习新的知识需要较长的理解过程,加上这一学段的学生思维处于由具体形象向抽象概括过渡的时期,对事物的认知停留在单一知识点上。他们可能会画一次函数的图像、会解一元一次不等式,但是很难将数与形结合起来,通过抽象归纳得出二者的内在联系。

2、教学方法

鉴于以上对教材和学情的分析,本节我将采用以启发探究式为主线、讲练结合的教学方法。在教学过程中,配合使用多媒体辅助教学,直观呈现教学素材,从而更好地激发学生的学习兴趣,提高教学效率。

三、说学法

1、学生自主探索交流,思考问题,获取知识,真正成为学习的主体。

2、学生在小组学习中形成合作交流的良好氛围,体验学习的快乐,更好地掌握知识,发展技能。

四、说教学程序

(一)创设问题情境,探究新知

兴趣是最好的老师。为了引起学生的兴趣,本节课我通过游戏引入。

游戏规则:准备好写有各种有理数的卡片若干张,每人每次从中抽取一张,用卡片上的数字乘以2再减去4,最后结果大于零的得1分,等于零的不得分,小于零的扣1分。10次以后,计算每人的得分总和,得分最高者获胜。

教师提问:

你希望抽到写有哪些数字的卡片?你希望哪些卡片被对方抽走?

在以上游戏中,若用x表示卡片上的数字,y表示计算的结果,你能写出y关于x的函数关系式吗?

设计游戏的目的有以下几点:

(1)游戏的内容便于学生列出函数关系式y=2x-4;

(2)通过游戏中得分、不得分、扣分规则的确定来建立函数与方程、函数与不等式的关系,既有对上节课内容的复习巩固,又为本节课的引入创设条件。

(二)探讨归纳,讲解新知

(1)解不等式2x-4>0

(2)观察函数y=2x-4图象,当自变量x为何值时,函数值大于0?

这一环节中,师生共同完成3个任务:教会学生看图、建立数形关系、归纳总结图像法解不等式的步骤。

所以,首先让学生画出引例中函数y=2x-4的图像。从y=0入手,然后分组讨论图像上y>0和y<0的部分。为了帮助学生理解,我把图像上y>0的部分染色。通过观察让学生发现图像上y>0的部分也就是x轴上方的部分。相应地,y<0的部分也就是x轴下方的部分。最后让学生找出y>0时相应的x的值。

通过对以上两个问题的解决,使学生认识到解不等式2x-4>0也就是求函数y=2x-4图像上,当y>0时相应的x的取值范围,从而建立数形关系。

最后引导学生归纳总结利用函数图像求不等式解集的步骤,这也是本节课的难点。

(1)把一元一次不等式转化为ax+b>0或ax+b<0的形式;

(2)画出一次函数图象;

(3)一次函数值大于(或小于)0时相应的自变量的取值范围,实质上是一次函数图像上x轴上方的点(或下方的点)对应的自变量的取值范围。

(三)应用新知

例2的设计是让学生进一步熟悉图像法解不等式的一般步骤,这也就是教材上的方法1,要求学生重点掌握。方法2有一定难度,本节课不再重点讨论。

例2:用画函数图像的方法解不等式5x+4<2x+10。

方法1:原不等式化为3x-6﹤0,画出直线y=3x-6。可以看出,当x<2时这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2

方法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10。可以看出,它们的交点的横坐标为2。当x<2时,对于同一个x,直线y=5x+4在直线y=2x+10上相应点的下方。这时5x+4<2x+10,所以不等式的解集为x<2。

总结:以上两种方法其实都是把解不等式转化为比较直线上的点的位置的高低。

从上面的两种解法可以看出,虽然用一次函数图象来解不等式未必简单,但从函数角度看问题,能发现一次函数与一元一次不等式之间的联系,直观的看出怎样用图形来表示不等式的解。这种用函数观点认识问题的方法不是单纯解题,而是加强知识间的融会贯通,用变化和对应的眼光分析问题,对于继续学习数学有着重要作用。

(四)随堂练习

1自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?

(1)y=0;(2)y=-7;

(3)y>0;(4)y<2.

设计意图:本题学生很容易想到代值求解,为了突出数与形的结合,要求学生利用图像解决问题。

2利用函数图象解出x:

(1)6x-4=3x-2;(2)6x-4<3x-2.

设计意图:(1)与(2)形式上虽然只是等式与不等式的区别,但反应在图像上相应的x的取值范围却不同。

(五)小结与作业

1、归纳反思

2、利用一次函数图像求一元一次不等式解集的步骤

作业布置

必做题:习题第3、4题

选做题:已知y1=-x+3,y2=3x-4,求x取得何值时y1>y2?

自我反思

应用新知中的方法2是初三数学中的重要方法,但考虑到学生的情况本节课没有详细讲。实际教学中可以根据学生的接受情况对本节内容进行适当的拓广延伸,尝试与中招考试衔接。这节课涉及到利用函数图像求解集的问题,采用几何画板动态演示的课堂效果会更好。

《一次函数》说课稿【第四篇】

一、分析教材与学生:

这是华师大八年级数学(下)第17章第3节中的一堂课。本节课是在学生学习了平面直角坐标系、函数的图象,一次函数及其图象的基础上学习的,它既是对前面知识的延续,又是为后面学习反比例函数、二次函数的性质作铺垫,也是今后学习高中代数,解析几何及其它数学分支的重要基础。在教材中起着承上启下的作用。其中所渗透的“数形结合”,归纳等数学思想方法是对学生的数学有重要的作用。学生在理解图象的性质,以及运用数形结合的思想解决问题,感到困难。结合以上分析,确定本节课的重难点为:

教学重点:结合图象,使学生进一步理解一次函数的图象

和性质;

教学难点:根据图象的性质来解决一些实际问题。

教学关键:利用数形结合的思想,辅以电脑演示动画,变

抽象为形象,注重知识的形成、发展过程,使学生在这些

过程中展开思维,从而突出重点、突破难点。

二、教学目标:

①知识目标:1、理解一次函数图象的性质,及学会性质判断函数值大小。

2、学会待定系数法求一次函数解析式

②能力目标:培养学生观察、分析的能力,数形结合能力,

化归能力,及与他人合作学习能力,培养学生创造性思维

和逻辑推理的能力。

③情感目标:体现了知识来源于实践,而又运用于生活,

同时渗透转化的思想,让学生体验客观事物是不断运动发

展变化,而事物之间总是互相联系,互相制约的辩证唯物

主义观点

三、陈述教学设想:

1、教法分析:本节课基本设计思路是着力于学生探索知识、体验知识发生、发展形成过程,通过创设探索学习情境,组识学生小组讨论、合作,让学生经历“尝试——猜想——验证”的过程中接受知识。获取知识。教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2、学法分析:通过让学生社会调查,收集有关资料等活动设计,引导学生观察、发现、转化,并在学生动手实践,自主探索,合作交流的基础,培养其互相协作能力,达到教法与学法的有机结合。以学生为主体,通过自主探索的方法,引导学生通过实践、思考、探索、交流获得知识,形成技能。培养学生动手,动口,动脑的能力。

①学会通过观察、比较、推理能概括一次函数的图象与性质。

②学会利用旧知转化成新知,解决新问题的能力。

③学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。

3、用及课程资源开发:本课将采用多媒体课件教学、辅之于投影图片等

四、教学过程:

(一)创设情景,引入课题:

1、教师事先让学生利用课余时间到去了解联通公司手机使用收费情况,提出问题

(1)联通的月租费是多少?

(2)每分钟费用又是多少?

在这基础上,让学生自己设计一个问题,然后能用函数关系来表示,从而引出诸如像y=30+等关系式组织学生讨论,生活中这样的函数关系式还能写出一些吗?

2、教师让学生算一算,取10分、20分时所化费用并比较y1与y2的大小,我们可以从图象上又更直观地判断函数值的大小,从而引出课题:一次函数的性质(出示课题)

(二)师生互动,探求新知

(1)先让学生画出y=30+(x≥0)图象

(2)让学生先独立思考,提出问题

①图象的位置从左到右是怎样变化的

②函数的值随着x又如何变化?在此基础上,组织四人小组讨论

(3)交流阶段,每组派代表上台发表汇报本小组成员的探索与成果,同时回答其他小组同学的提问

(4)教师又让学生自己画出y=—x+2,及y=—2x—1的图象,并再次组织讨论。

最后,教师根据刚才学生讨论交流情况,用多媒体显示,学生得到的一次函数的性质

①K>0时,y随x的增大而增大,这时函数的图象从左到右上升

②K<0时,y随x的增大而减小,这时函数的图象从左到右降低

(5)这时教师又带领学生回到课一开始时提出的问题让学生学会从图象上观察,函数值的大小,从而培养数形结合能力,及应用能力,也能使所学知识得到及时巩固。

(三)面授调节,练习反馈

1、教师用多媒体显“做一做”然后组织学生独立完成

2、巩固一次函数的性质,

设计如下练习

(1)y=(m-4)-2,当m取何值时,y随x的增大而增大

(2)y=(m+)xm2+1是一次函数,且y随x的增大而减小,求m值

(3)图象上有两点(—1,a),(3,b)请比较a、b的大小

(这题练习鼓励学生运用多种方法解决,然后让他们自己比较方法好坏)

(4)设计一个实际应用题,让学生运用刚学的新知识尝试解决。

(5)讲解课本例题,简要介绍待定系数法,及如何用“两点法”求一次函数解析式。

3、同桌之间互相出题,再次巩固性质

设计练习如下,已知一次函数图象如图如示,求一次函数解析式。

(四)、梳理知识,系统归纳

1、归纳总结:①哪些函数y随x的增大而增大?哪些函数y随x的增大而减小②与系数k、b的符号有何关系?③小结后填表

图象的位置性质相同点

2、提问:①通过这一节课学习,大家有哪些体会和收获?

能说说吗?

②这节课你能用所学的一次函数的性质来解决生活中的实际问题吗?

③这节课我们学习了哪些数学思想方法?

(同桌对讲、畅谈自己的感受和体会、学生发言,教师归纳、总结)

(五)布置作业

1、必做题见作业本(A)

2、选做题:①A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城往C、D两地运费分别为20元/吨和25元/吨,从B城运往C、D两地运费分别为15元/吨和22元/吨,现已知C地需要220吨,D地需要280吨,如果某个体户承接这项运输业务,请你帮他算算,怎样调运花钱最少。

3、写1篇有关“一次函数性质”的小论文。

(六)、板书设计:

一次函数的性质

性质:

小结:

教师作图演示区

表格:

(七)说评价:

学生学习数学的过程是一个基于学生经验的主动建构的过程。新课程理念下的教学过程是生生、师生交往,积极互动的过程。使学生通过互动得到其相应的发展是我们进行教学的根本宗旨,同时,学生之间互相合作,彼此获得双赢,我们所采取的一切方法都是为这个宗旨服务的,我们教师怎样才能在“动”的课堂时刻把握方向引领学生,到达发展学生的彼岸,是我们必须思考的问题。“关注学生的生活,认识经验”是新课标所提倡的,在本堂课设计中,我力图体现上述宗旨。

(八)教学设计说明

本节课的主要内容是规律原理的探索和技能的形成,因此本节课归为探究型教学目标类型。基于这一原则,我对本节课教学设计的指导思想如下:

⑴以实现教学目标为前提:强调学生双基的培养以及思想品德教育,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。

⑵以现代教育理论为依据:注重学生的心理活动过程、人类掌握知识和形成能力的发展过程,强调教学过程的有序性。

⑶以基本的教学原则作指导:充分发挥学生的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知。

⑷以先进的现代信息技术为手段:适当地辅以先进的电脑多媒体技术,演示运动变化规律、揭示事物本质特征;提供典型现象和过程,供学生作为分析、思考、探究、发现的对象,以帮助学生理解原理,并掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学媒体有机结合,以实现教学最优化。

20 461101
");