六年级数学上册重要复习知识点归纳(精选4篇)

网友 分享 时间:

【引言】阿拉题库漂亮网友为您分享整理的“六年级数学上册重要复习知识点归纳(精选4篇)”范文资料,以供参考学习,希望这篇文档资料对您有所帮助,喜欢就下载分享给朋友吧!

六年级数学上册知识的复习【第一篇】

一、分数乘法

(一)分数乘法的意义和计算法则

1、分数乘整数的意义

2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

2、分数乘整数的计算方法

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

4、分数乘分数的的计算方法

分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

(二)求一个数的几分之几是多少的问题

1、找单位“1”的方法

(1)是谁的几分之几,就把谁看作单位“1”。

(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

分率不带单位,具体数量带有单位。

2、求一个数的几倍、几分之几是多少,用乘法计算。

15的3/5是多少? 15×3/5=9

3、已知单位“1”用乘法计算

单位“1”×分率=分率的对应量

注意:(1) 乘上什么样的分率就等于什么样的数量。

(2) 乘上谁占的分率就等于谁的数量。

(3) 是谁的几分之几,就用谁乘上几分之几。

4、已知A比B多(或少)几分之几,求A的解题方法

5、积与因数的大小关系

大于1的数,积大于A。

A(0除外)乘上

小于1的数,积小于A。

二、位置与方向

1、确定物体的位置:(上北下南,左西右东)

(1)北偏东30°就是从北向东移,夹角靠北。

(2)东偏北30°就是从东向北移,夹角靠东。

2、物体位置的相对性

(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)

南对北 东对西

则学校在少年宫北偏西35°的'方向上,相距250米。(在少年宫是以少年宫为观测点)

三、分数除法

(一)倒数的认识

1、倒数的意义

乘积是1的两个数互为倒数。 (注意:不能单独说某个数是倒数。)

2、求倒数的方法

求一个分数的倒数(0除外),只要把这个分数的分子、分母调换位置。

是带分数的先化成假分数

是小数的先化成分数

整数的倒数:整数是几,它的倒数就是几分之一。

3、 1的倒数是1,0没有倒数。

(三)分数除法

1、分数除法的意义

3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。

2、分数除法的计算方法

除以一个不等于0的数,等于乘这个数的倒数。

3、被除数与商的大小关系

当除数小于1时,商就大于被除数。(0除外)

当除数大于1时,商就小于被除数。(0除外)

4、分数四则混合运算的运算顺序

(1) 只有“+、-”或只有“×、÷”,从左往右计算。

(2) 有“+、-”,也有“×、÷”,先乘除后加减。

(3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。

(一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。

1、已知一个数的几分之几是多少,求这个数的问题

例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25

2、求一个数是另一个数的几倍、几分之几,用除法计算。

方法是:用“是”字前面的数÷“是”字后面的数。

例:1、15是5的几倍? 15÷5=3

2、20是25的几分之几? 20÷25=4/5

3、求一个数比另一个数多(或少)几分之几的解题方法是:

用相差量÷问题“比”字后面的量

例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4

(2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5

4、求单位“1”用除法计算。

具体量(对应量)÷对应分率=单位“1”

什么样的数量就对应什么样的分率。

什么样的分率就对应什么样的数量。

5、求平均数问题: 总量÷总份数=每份数

注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)

6、已知A比B多(或少)几分之几,求B的解题方法:

A÷(1+/-几分之几)=B

7、已知单位“1”用乘法,求单位“1”用除法;

分率比多的就1+,比少的就1-。

8、工程问题

把工作总量看作“1”,工作效率就是1/工作时间。

工作时间=工作量 ÷ 工作效率

要做的工作量 由谁做就除以谁的工作效率

1人的效率=两人的效率和-另1人的效率

小学六年级数学复习题【第二篇】

1、填入合适的单位名称:

一个铅笔盒的体积约有200( );一瓶醋的体积约( );

一辆卡车的油箱容积约160( );一艘货轮的容积约300( )。

2、( )是24的 ; 的 是( ) ;

( )比18的3倍少6;24比( )的2倍多4;

36吨的( )是24吨 ;( )米比 米多 米;

3、鸡有χ只,鸭的只数是鸡的 ,鸭有( )只,比鸡少( )只 。

4、一台插秧机χ小时可插秧10公顷,这台插秧机平均每公顷要( )小时,它平均1小时能插秧( )公顷。

5、看图写算式: ( )○( )=( )

6、工厂有一堆煤,用掉 后,又运来36吨,这时工厂的煤正好与原来一样多,这个工厂原有煤( )吨。

7、用20个棱长2厘米的小正方体,拼成一个长方体,这个长方体表面积最小是( )平方厘米,体积是( )立方厘米。

8、将10克盐放入100克水中,盐占盐水的( )( ) 。

9、加工一批零件需8天完成,平均每天完成这批零件的( ),照这样计算, 5天可以加工这批零件的( ),加工5天后还剩下这批零件的( )。

10、( )﹕4= =24÷( )==1÷( )

11、一个长2米的长方体钢材截成三段,表面积比原来增加平方分米,这根钢材原来体积是( )

12、如果a× =b÷ (a、b≠0),那么a与b相比较,( )。

A、a大 B、b大 C、一样大 D、无法确定

13、一台收割机 小时可收割 公顷的水稻。照这样计算, 小时能收割多少公顷的水稻?( )

14、操作、探究题

1、画一个三角形,要求面积是6平方厘米,高是3厘米。

2、先观察、分析下面的各组摆放情况,再填写表格(注:每个小正方体棱长1厘米)

层数 1 2 3 …… 5 ……

正方体个数 1 3 6 …… ……

图形表面积(平方厘米) 6 14 24 …… ……

图形体积(立方厘米) 1 3 6 …… ……

20、修一条 千米的公路,已经修了 千米,再修多少千米正好修完这条公路的 ?

21、一堆煤60千克,第一天烧了它的 ,第二天烧了 千克,这堆煤比原来少了多少千克?

22、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上高为25厘米的商标纸,这张商标纸的面积是多少平方米?

24、甲乙两车同时从相距540千米的AB两地相对开出,5小时后,甲车行了全程的3/4,乙车行了全程的2/3,这时两车相距多少千米?

25、甲、乙两队合修一条长2500米的公路,甲队完成所分任务的23 ,乙队完成所分任务的34 又50米,还剩700米没有修。两队所分任务各是多少米?

26、果园里种着苹果树和梨树。苹果树的面积比总面积的12 多4公顷,梨树的面积是苹果树的12 。求两种树各种了多少公顷?

27、中夏化工总厂有两堆煤,共重2268千克,取出甲堆的25 和乙堆的14 共重708千克。问甲、乙两堆原有煤各是多少千克?

六年级数学上册复习【第三篇】

1、 扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

2、 常用统计图的优点:

(1)、条形统计图:直观显示每个数量的多少。

(2)、折线统计图:不仅直观显示数量的增减变化,还可清晰看出个数据的变化趋势。

(3)、扇形统计图:直观显示部分和总量的关系。

3、常见题型:

1、求一部分占总体的百分数。

2、已知整体求部分,用乘法。

3、已知部分,求整体,用除法。

数学广角

一、研究中国古代的`鸡兔同笼问题。

1、 用表格方式解决有局限性,数目必须小

2、 用假设法解决

(1) 假如都是兔,先求出的是鸡的只数

(2) 假如都是鸡,先求出的是兔的只数

注意:当提到扣分时,做减法。

和尚分馒头

100个和尚吃100个馒头,大和尚一人吃3个,小和尚三人吃一个。大小和尚各多少人?

六年级数学上册复习资料【第四篇】

1、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

3、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归

5、倒数:乘积是1的两个数叫做互为倒数。

6、分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

8、小数的倒数:

普通算法:找一个小数的倒数,例如,把化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

9、用1计算法:也可以用1去除以这个数,例如,1/等于4,所以的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10、分数除法:分数除法是分数乘法的逆运算。

11、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13、分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个。

15、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16、比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。

17、比和比例的区别:

(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。

18、比和比例的意义:

比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!

19、比和比例的联系:

比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。

20、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

22、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

23、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一。d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

24、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

25、圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

26、圆的面积公式:圆所占平面的大小叫做圆的面积。πr2;用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

27、周长计算公式:

(1)已知直径:C=πd

(2)已知半径:C=2πr

(3)已知周长:D=c/π

(4)圆周长的一半:1/2周长(曲线)

(5)半圆的周长:1/2周长+直径(π÷2+1)

28、面积计算公式:

(1)已知半径:S=πr2

(2)已知直径:S=π(d/2)2

(3)已知周长:S=π[c÷(2π)]2

29、百分数与分数的区别:

(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系。

(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义。

(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。

30、百分数应用:

百分数一般有三种情况:①100%以上,如:增长率、增产率等。②100%以下,如:发芽率、成长率等。③刚好100%,如:正确率,合格率等。

31、百分数的意义:

百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。

32、日常应用:

每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。

65 884930
");