六年级数学上册知识点复习精编5篇

网友 分享 时间:

【导言】此例“六年级数学上册知识点复习精编5篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

小学六年级上册的数学复习资料1

1、甲、乙两仓共有200吨粮食,如果甲仓的 和乙仓的 共44吨,甲、乙两仓原有粮食各多少吨?

2,方方和小明各有邮票若干张,方方拿出 给小明后,小明再拿出现有邮票的 给方方,这时他们都有90张邮票。他们原来各有邮票多少张?

3.小红买6角和8角的邮票一共13张,用去8元4角钱。这两种邮票各买了多少张?(用“假设”的策略进行思考)

4、一个商场十二月上旬售出电视机150台,比中旬少 ,下旬比上旬多50%,这个商场十二月份共售出电视机多少台?

5、把一个棱长5厘米的正方体木块的表面涂上红漆,切成棱长1厘米的小正方体木块,三面涂色的有多少块?两面涂色的有多少块?一面涂色的有多少块?没有涂色的有多少块?

6、有一个长方体的盒子,从里面量长40厘米,宽12厘米,高7厘米,在这个盒子里放长5厘米、宽4厘米、高3厘米的长方体木块,最多能放几块?

7、用3块长3厘米,宽2厘米,高1厘米的长方体木块拼成一个较大的长方体,一共有几种拼法?拼成的表面积最小是多少?

8、两堆黄沙共吨,第一堆用去 ,第二堆用去 ,把两堆剩下的合在一起,比原来第一堆还少 ,原来第一堆有多少吨?

9、加工一批零件,原计划每天加工15个,若干天可以完工,当完成加工任务的 ,采用新技术,工作效率提高20% ,结果提前10天完成任务,这批零件共有多少个?

10、甲乙两辆汽车分别从A、B两地同时相对开出,乙每小时行全程的10%,甲比乙早 小时到达A、B两地的中点,当乙车到达中点时、甲车又继续向前行驶了25千米到达C点,A、B两地相距多少千米?

11、一个长10厘米,宽6厘米,高5厘米的长方体木块,可以切割成( )块棱长是2厘米的正方体木块。

12、一个长方体玻璃容器,里面装有15厘米深的水,放入一块棱长6厘米的正方体铁块,水面上升3厘米,再放入一块长6厘米、宽厘米、高4厘米的长方体铁块,现在水深多少厘米?

13、一列客车和一列货车同时从甲地出发开往乙地。当客车行了全程的 时,货车行了全程的20%。照这样计算,客车到达乙地时,货车离乙地还有30千米。甲乙两地相距多少千米?

12. 从甲地到乙,客车要10小时,货车要15小时,现在两车同时从两城相对开出,相遇时客车正好行了240千米,问甲乙两城相距多少千米?(用方程求解)

14、甲、乙两车同时从A、B两地相向而行,经过6小时相遇,相遇后甲车又行了4小时到达B地。问:相遇后乙车又行了几小时才到达A地?

考括坟籍,博采群议。山草香为大家整理的5篇6年级数学上册知识点复习到这里就结束了,希望可以帮助您更好的写作六年级上册数学复习资料。

六年级数学上册知识点复习2

一、分数乘法

(一)、分数乘法的计算法则:

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)

一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a

乘法结合律: ( a × b )×c = a × ( b × c )

乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c

二、分数乘法的解决问题

(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面

2、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数× 。

3、写数量关系式技巧:

(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”

(2)分率前是“的”: 单位“1”的量×分率=分率对应量

(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

三、倒数

1、倒数的意义: 乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:

(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0, (分母不能为0)

4、 对于任意数 ,它的倒数为 ;非零整数 的倒数为 ;分数 的倒数是 ;

5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

分数除法

一、 分数除法

1、分数除法的意义:

分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。

3、 规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;

(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、 “ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。

二、分数除法解决问题

(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )

1、数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”: 单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

2、解法:(建议:最好用方程解答)

(1)方程: 根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

3、求一个数是另一个数的几分之几:就 一个数÷另一个数

4、求一个数比另一个数多(少)几分之几:

① 求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数

或① 求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数

三、比和比的应用

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10= (比值通常用分数表示,也可以用小数或整数表示)

∶ ∶ ∶ ∶

前项 比号 后项 比值

3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。

4、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、 比和除法、分数的联系:

比 前 项 比号“:” 后 项 比值

除 法 被除数 除号“÷” 除 数 商

分 数 分 子分数线“—” 分 母 分数值

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:

①用比的前项和后项同时除以它们的最大公因数。

(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = = 3∶2

5.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

如: 已知两个量之比为 ,则设这两个量分别为 。

6、 路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

一、 认识圆

1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O表示。它到圆上任意一点的距离都相等。

3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 。

用字母表示为:d=2r或r =

8、轴对称图形:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)

9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是: 长方形

只有3条对称轴的图形是: 等边三角形

只有4条对称轴的图形是: 正方形;

有无数条对称轴的图形是: 圆、圆环。

二、圆的周长

1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

2、圆周率实验:

在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai) 表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。在计算时,一般取π ≈ 。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是倍。

(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式: C= πd d = C ÷π

或C=2π r r = C ÷ 2π

5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:

(1) 周长的一半:等于圆的周长÷2 计算方法:2π r ÷ 2 即 π r

(2)半圆的周长:等于圆的周长的一半加直径。 计算方法:πr+2r

三、圆的面积

1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。

3、圆面积公式的推导:

(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

(3)、拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽

圆的周长的一半 = 长方形的长

因为: 长方形面积 = 长 × 宽

所以: 圆的面积 = 圆周长的一半 × 圆的半径

S圆 = πr × r

圆的面积公式: S圆 = πr2

4、环形的面积:

一个环形,外圆的半径是R,内圆的半径是r。(R=r+环的宽度。)

S环 = πR²-πr²  或

环形的面积公式: S环 = π(R²-r²)。

5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小的倍数是这倍数的平方倍。 例如:

在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。 例如:

两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

9、确定起跑线:

(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度。

(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。(因此起跑线不同)

(3)、每相邻两个跑道相隔的距离是: 2×π×跑道的宽度

(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

11、常用各π值结果:

π =

2π =

3π =

5π =

6π =

7π =

9π =

10π =

16π =

36π =

64π =

96π =

4π = 8π = 25π =

12、常用平方数结果

= 121 = 144 = 169 = 196 = 225

= 256 = 289 = 324 = 361

百分数

一、百分数的意义和写法

1、百分数的意义:表示一个数是另一个数的百分之几。

百分数是指的两个数的比,因此也叫百分率或百分比。

2、 千分数:表示一个数是另一个数的千分之几。

3、 百分数和分数的主要联系与区别:

(1) 联系:都可以表示两个量的倍比关系。

(2) 区别:

①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;

分数的分子不能是小数,只能是除0以外的自然数。

4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。

二、百分数和分数、小数的互化

(一)百分数与小数的互化:

1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。

(二)百分数的和分数的互化

1、百分数化成分数:

先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。

2、分数化成百分数:

① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(三)常见的分数与小数、百分数之间的互化

= = 50% = = 20% = = %

= = 25% = = 40% = = %

= = 75% = = 60% = = %

= = % = = 80% = = %

= = 4﹪ = = 8﹪ = = 12﹪ = = 16﹪

三、用百分数解决问题

(一)一般应用题

1、常见的百分率的计算方法:

①合格率 = ②发芽率 =

③出勤率 = ④达标率 =

⑤成活率 = ⑥出粉率 =

⑦烘干率 = ⑧含水率 =

一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)

2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:

数量关系式和分数乘法解决问题中的关系式相同:

(1)分率前是“的”: 单位“1”的量×分率=分率对应量

(2)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量

3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。

解法:(建议:最好用方程解答)

(1)方程: 根据数量关系式设未知量为X,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量

4、求一个数比另一个数多(少)百分之几的问题:

两个数的相差量÷单位“1”的量 × 100% 或:

① 求多百分之几:(大数-小数)÷小数

② 求少百分之几:(大数-小数)÷大数

(二)、折扣

1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。

几折就表示十分之几,也就是百分之几十。例如八折= =80﹪,六折五==65﹪

2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%

(三)、纳税

1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

3、应纳税额:缴纳的税款叫做应纳税额。

4、税率:应纳税额与各种收入的比率叫做税率。

5、应纳税额的计算方法:应纳税额 = 总收入 × 税率

(四)利息

1、存款分为活期、整存整取和零存整取等方法。

2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

3、本金:存入银行的钱叫做本金。

4、利息:取款时银行多支付的钱叫做利息。

5、利率:利息与本金的比值叫做利率。

6、利息的计算公式:利息=本金×利率×时间

7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

扇形统计图

一、扇形统计图的意义:

用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比(因此也叫百分比图)。

二、常用统计图的优点:

1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

圆柱与圆锥

一、圆柱的特征:

1、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。

2、圆柱的高:圆柱两个底面之间的距离叫做高。圆柱的高有无数条。

3、圆柱的侧面展开图:圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

4、圆柱的侧面积 = 底面周长×高 即S侧=Ch 或 2πr×h

5、圆柱的表面积 = 圆柱的侧面积 +底面积×2 即S表=S侧+S底×2或2πr×h + 2×πr2

6、圆柱的体积=圆柱的底面积×高, 即V=sh或 πr2×h

7、将一张长方形围成圆柱有两种方法,将一张长方形进行旋转一般也有两种。

(进一法:实际中,使用的材料都要比计算的结果多一些 ,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)

二、圆锥的特征:

1、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

2、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)

3、把圆锥的侧面展开得到一个扇形。4、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥= Sh 或V锥= πr2×h

5、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

6、圆柱和圆锥的特征

圆柱 圆锥

底面 两个底面完全相同,都是圆形。 一个底面,是圆形。

侧面 曲面,沿高剪开,展开后是长方形。 曲面,沿顶点到底面圆周上的一条线段剪开,展开后是扇形。

高 两个底面之间的距离,有无数条。 顶点到底面圆心的距离,只有一条。

常用单位换算

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月

平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时

1时=60分 1分=60秒 1时=3600秒

六年级数学上册知识点精选3

1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

一般先看横的数字,再看竖的数字,注意中间是逗号

2.分数乘法的意义:一个数×分数

分数×一个数

3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

4.除以一个不等于0的数,等于乘这个数的倒数

5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数

6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈

8.有关圆的公式:

C= 兀d = 2兀r S =兀r 2

d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2

圆环的面积S = 兀 R 2-兀 r 2

9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息

10.条形统计图:可以清楚的看出数据的多少

折线统计图:可以清楚的看出数据的增减变化趋势

扇形统计图:可以清楚的看出各部分同总数之间的关系

六年级数学下册知识点

一、比例

1、比例的基本性质是在比例里两内项积等于两外项积。

2、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

Y : x = k(一定)

3、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

Xy=k(一定)

二、数与代数(复习)

1、自然数和0都是整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

9、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

13、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

小学六年级上册的数学复习资料4

一、分数、百分数应用题解题公式

单位“1” 已知: 单位“1” × 对应分率 = 对应数量

求单位“1”或单位“1”未知:对应数量 ÷ 对应分率 = 单位“1”

1、求一个数是另一个数的几分之几(或百分之几)公式:一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(百分之几)

2、求一个数比另一个数多几分之几(或百分之几)公式:

多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几)

3、求一个数比另一个数少几分之几(或百分之几)公式:

少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几)

二、熟练掌握:百分数和分数、小数的互化,熟练背诵:

1 2 = = 50% 1 4 = =25% 3 4 = = 75%

1 5 = = 20% 2 5 = = 40% 3 5 = = 60%

4 5 = = 80% 1 8 ==% 3 8 ==%

5 8 ==% 7 8 ==% 1 10 ==10%

1 20 ==5% 1 25 ==4% 1 50 ==2%

1 100 ==1%

三、基本题型:

(1)一条路全长1200米,第一天修了全长的 1 5 ,第二天修了全长的 1 4 ,还剩几分之几没有修?

(2)果园里有桃树200棵,梨树比桃树少 1 5 ,果园里有梨树多少棵?

(3)果园里有桃树200棵,比梨树少 1 5 ,果园里有梨树多少棵?

(4)一件上衣,降价20%后是72元,这件上衣原价多少元?

(5)一条路,第一天修了全长的 1 5 ,第二天修了全长的 1 4 ,第一天比第二天少修60米,这条路全长多少米?

6)五月份比六月份节约用水20吨,五月份用水80吨。五月份比六月份用水节约百分之几?

(7)一杯盐水,盐10克,水90克,这杯盐水的含盐率。

(8)在一个边长为4米的正方形钢板上截取一个最大的圆形钢板,求这块钢板的利用率。

(9)一条路全长1200米,第一天修了全长的 1 5 ,第二天修了全长的 1 4 ,两天一共修了多少米?条二天比第一天多修多少米?还剩多少米?

(10)果园里有桃树200棵,比梨树的 1 5 少50棵,果园里有梨树多少棵?

(11)在一个半径是10米的圆形花坛里种红花和黄花,种红花和黄花的面积比是2:3。种红花和黄花各有多少?

(12)自行车的前轮直径是70厘米,如果自行车每分钟转100圈,要通过一座长千米的大桥,需要多少分钟?

(13)、甲、乙两人去书店买书,共带去54元,甲用去自己钱的75%,乙用去自己钱的45 ,两人剩下的钱数正好相等。甲、乙两人原来各带去多少元钱?

小学六年级上册的数学复习资料5

1、甲、乙两个工人共同加工140个零件。甲做自己任务的80%,乙做自己任务的75%,这时甲、乙共剩下32个零件未完成。问甲、乙两个工人原来各需做多少个零件?

2、师徒两人共加工540个零件,师傅加工了自己所分任务的34 ,徒弟加工了所分任务的80%,两人剩下的任务正好相等。求师徒两人各分得多少个零件的加工任务?

3、学校买回两种图书,共220本,取出甲种图书的14 和乙种图书的15 共50本借给五年级(1)班同学阅读,问甲、乙两种图书各买回来多少本?

4、学校买来一批图书,其中文艺书占49 ,数学书占余下的1825 ,已知数学书比文艺书少20本。这批图书共有多少本?

5、修路队要修一条 千米长的路,已修了 千米。再修多少千米正好修完这条路的 ?

6. 希望小学参加植树活动,把任务按2∶3∶4分配给四、五、六三个年级,已知六年级比四年级多植树84棵,这次任务三个年级共植树多少棵?

7、一个化肥厂,今年生产化肥2800吨,比去年的 1 2 多40吨。去年生产化肥多少吨?

8、一块棱长是米的正方体的钢坯,锻成横截面边长是平方米的长方体钢材,锻成的钢材有多长?

9、一批零件,甲独做12小时完成,乙独做15小时完成,丙独做20小时完成。现将这批零件平均分给甲、乙两人加工。实际加工时丙先帮甲做了一会儿,随后又帮乙做,直至完成,这时甲、丙两人恰好同时完工。求完成时,甲做了几小时?

10、吴师傅改进技术后,加工一个零件的时间从原来的10分钟降低到6分钟,那么他现在9小时加工的零件,原来加工需要多少小时完成?

11、甲、乙两筐苹果共重120千克,甲筐取出14 ,乙筐取出14 。两次共取出苹果多少千克?

12、化工厂计划在一块长10米、宽8米的长方形空地上挖一个尽可能大的圆柱形蓄水池。

(1)如果挖成的水池深5米,这个水池能蓄水多少吨?(每立方米水重1吨)(2)若在这个水池的侧面和池底抹上一层水泥,抹水泥的面积是多大?

48 435984
");