电镀岗位职责【优质4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“电镀岗位职责【优质4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

电子电镀技术【第一篇】

姓名: xxx 国籍: 中国

目前住地: 广州 民族: 壮族

户 籍 地: 广西 身高体重: 160 cm 53 kg

婚姻状况: 已婚 年龄: 29 岁

培训认证: 人才测评:

求职意向及工作经历

人才类型: 普通求职

应聘职位: 化学工程类:电镀工程师

工作年限: 6 职称: 中级

求职类型: 全职 可到职日期: 两个星期

月薪要求: 3500--5000 希望工作地区: 广州 中山 珠海

工作经历:

公司名称:广州番禺**五金塑料制品厂 起止年月:2005-05 ~

公司性质: 私营企业所属行业:化学化工,生物制品

担任职务: 电镀技术员

工作描述: 1.负责带领一个班化验员对汽车零配件塑胶(ABS,PC/ABS)电镀前处理除油,亲水,粗化,催化,化学沉镍,焦磷酸盐镀铜等分析;电镀线酸铜,半光镍,光镍,镍封,珍珠镍,光铬,三价黑铬等镀液成分的分析和监控及异常问题的处理,

2.对镀铜镍液应力的检测,镀层厚度和电位差的测量。并对分析结果进行SPC过程统计控制,熟悉HULL氏槽试验。

离职原因: 谋求发展

公司名称: 起止年月:2002-01 ~ 2005-04广州白云区丰宁铝轮壳电镀厂

公司性质: 私营企业所属行业:化学化工,生物制品

担任职务: 化验员,化验工程师

工作描述: 汽车铝轮壳电镀镀液(Cu,Ni,Cr,Sn,Zn,Fe,Ag)等含量的分析,废水处理分析(总Cu,Cr,Ni,Zn),通过HULL氏槽试验对光剂调控,及对镀层耐蚀性(CASS)试验.

离职原因: 效益差,工厂倒闭

公司名称: 起止年月:2001-03 ~ 2001-07广州致达电子厂

公司性质: 民营企业所属行业:电器,电子,通信设备

担任职务: 化学分析员

工作描述: PCB电镀(除胶Line,PTHLine,图形电镀线,化学沉镍金线,电镀镍金线,)镀液分析。

离职原因: 回家乡发展

教育背景

毕业院校: 广西河池民族工业中专

最高学历: 中专 毕业日期: 2001-07-01

所学专业: 工业化学分析 第二专业:

培训经历:

起始年月 终止年月 学校(机构) 专 业 获得证书 证书编号

1997-09 2001-07 广西河池民族工业中专 工业分析 职业资格证书

语言能力

外语: 英语 一般

国语水平: 良好 粤语水平: 一般

工作能力及其他专长

1,曾从事PCB电镀(除胶Line,PTHLine,图形电镀线,化学沉镍金线,电镀镍金线,)镀液分析;汽车铝轮壳电镀前处理除油,除腊,沉锌剂,除垢分析,电镀线光铜,半光镍,高硫镍,光镍,光铬等镀液含量的分析;汽车零配件塑胶(ABS,PC/ABS)电镀前处理除油,亲水,粗化,NP-8,化学沉镍,焦磷酸盐镀铜等分析;电镀线酸铜,半光镍,光镍,镍封,珍珠镍,光铬,三价黑铬等镀液成分的分析,并对分析结果进行SPC过程统计控制,对镀铜镍液应力的检测,熟悉HULL氏槽试验。废水处理分析(总Cu,Cr,Ni,Zn).

2,2001年在广州致达电子厂参加实习工作时,曾单独负责组建一个无机物化验室:从开始筹备各种仪器设备和化学试剂,配制和标定化学标准溶液,到最后正常投入运行都由本人单独完成。

3,熟悉化验室业务A,化验室人员管理B,化验室技术装备管理(包括仪器设备,化学试剂,技术文件等),C,化验室安全管理D,化验室工作质量管理

4,熟悉PCB板湿流程工艺(除胶Line,PTHLine,图形电镀Line,化学沉镍金Line,电镀镍金Line),塑料(ABS,PC+ABS)电镀工艺(Cu/Ni/Cr,Ni/Cu/Ni/Cr,Cu/Ni/Ni/Cr,珍珠镍),善于HULL氏槽试验对光剂调控,及各工艺药水的维护和监测,能解决日常电镀生产中发生的药水故障。

详细个人自传

1.具有八年电镀厂化验室分析工作和管理经验,能熟悉运用酸碱法,配位法,氧化还原法,称量分析法,沉淀法,非水滴定法及仪器分析(UV机)等方法对物质的含量准确分析。

电子电镀技术【第二篇】

关键词:集成电路,铜互连,电镀,阻挡层

1.双嵌入式铜互连工艺

随着芯片集成度的不断提高,铜已经取代铝成为超大规模集成电路制造中的主流互连技术。作为铝的替代物,铜导线可以降低互连阻抗,降低功耗和成本,提高芯片的集成度、器件密度和时钟频率。

由于对铜的刻蚀非常困难,因此铜互连采用双嵌入式工艺,又称双大马士革工艺(Dual Damascene),如图1所示,1)首先沉积一层薄的氮化硅(Si3N4)作为扩散阻挡层和刻蚀终止层,2)接着在上面沉积一定厚度的氧化硅(SiO2),3)然后光刻出微通孔(Via),4)对通孔进行部分刻蚀,5)之后再光刻出沟槽(Trench),6)继续刻蚀出完整的通孔和沟槽,7)接着是溅射(PVD)扩散阻挡层(TaN/Ta)和铜种籽层(Seed Layer)。Ta的作用是增强与Cu的黏附性,种籽层是作为电镀时的导电层,8)之后就是铜互连线的电镀工艺,9)最后是退火和化学机械抛光(CMP),对铜镀层进行平坦化处理和清洗。

图1 铜互连双嵌入式工艺示意图

电镀是完成铜互连线的主要工艺。集成电路铜电镀工艺通常采用硫酸盐体系的电镀液,镀液由硫酸铜、硫酸和水组成,呈淡蓝色。当电源加在铜(阳极)和硅片(阴极)之间时,溶液中产生电流并形成电场。阳极的铜发生反应转化成铜离子和电子,同时阴极也发生反应,阴极附近的铜离子与电子结合形成镀在硅片表面的铜,铜离子在外加电场的作用下,由阳极向阴极定向移动并补充阴极附近的浓度损耗,如图2所示。电镀的主要目的是在硅片上沉积一层致密、无孔洞、无缝隙和其它缺陷、分布均匀的铜。

图2 集成电路电镀铜工艺示意图

2. 电镀铜工艺中有机添加剂的作用

由于铜电镀要求在厚度均匀的整个硅片镀层以及电流密度不均匀的微小局部区域(超填充区)能够同时传输差异很大的电流密度,再加上集成电路特征尺寸不断缩小,和沟槽深宽比增大,沟槽的填充效果和镀层质量很大程度上取决于电镀液的化学性能,有机添加剂是改善电镀液性能非常关键的因素,填充性能与添加剂的成份和浓度密切相关,关于添加剂的研究一直是电镀铜工艺的重点之一[1,2]。目前集成电路铜电镀的添加剂供应商有Enthone、Rohm&Haas等公司,其中Enthone公司的ViaForm系列添加剂目前应用较广泛。ViaForm系列包括三种有机添加剂:加速剂(Accelerator)、抑制剂(Suppressor)和平坦剂(Leverler)。当晶片被浸入电镀槽中时,添加剂立刻吸附在铜种籽层表面,如图3所示。沟槽内首先进行的是均匀性填充,填充反应动力学受抑制剂控制。接着,当加速剂达到临界浓度时,电镀开始从均匀性填充转变成由底部向上的填充。加速剂吸附在铜表面,降低电镀反应的电化学反应势,促进快速沉积反应。当沟槽填充过程完成后,表面吸附的平坦剂开始发挥作用,抑制铜的继续沉积,以减小表面的粗糙度。

加速剂通常是含有硫或及其官能团的有机物,例如聚二硫二丙烷磺酸钠(SPS),或3-巯基丙烷磺酸(MPSA)。加速剂分子量较小,一般吸附在铜表面和沟槽底部,降低电镀反应的电化学电位和阴极极化,从而使该部位沉积速率加快,实现沟槽的超填充。

抑制剂包括聚乙二醇(PEG)、聚丙烯二醇和聚乙二醇的共聚物,一般是长链聚合物。抑制剂的平均相对分子质量一般大于1000,有效性与相对分子质量有关,扩散系数低,溶解度较小,抑制剂的含量通常远大于加速剂和平坦剂。抑制剂一般大量吸附在沟槽的开口处,抑制这部分的铜沉积,防止出现空洞。在和氯离子的共同作用下,抑制剂通过扩散-淀积在阴极表面上形成一层连续抑制电流的单层膜,通过阻碍铜离子扩散来抑制铜的继续沉积。氯离子的存在,可以增强铜表面抑制剂的吸附作用,这样抑制剂在界面处的浓度就不依赖于它们的质量传输速率和向表面扩散的速率。氯离子在电镀液中的含量虽然只有几十ppm,但对铜的超填充过程非常重要。如果氯浓度过低,会使抑制剂的作用减弱;若氯浓度过高,则会与加速剂在吸附上过度竞争。

平坦剂中一般含有氮原子,通常是含氮的高分子聚合物,粘度较大,因此会依赖质量运输,这样在深而窄的孔内与加速剂、抑制剂的吸附竞争中没有优势,但在平坦和突出的表面,质量传输更有效。沟槽填充完成后,加速剂并不停止工作,继续促进铜的沉积,但吸附了平坦剂的地方电流会受到明显抑制,可以抑制铜过度的沉积。平坦剂通过在较密的细线条上方抑制铜的过度沉积从而获得较好的平坦化效果,保证了较小尺寸的图形不会被提前填满,有效地降低了镀层表面起伏。

在铜电镀过程中,对填充过程产生影响的主要是加速剂、抑制剂和氯离子,填充过程完成后对镀层表面粗糙度产生影响的主要是平坦剂。铜电镀是有机添加剂共同作用的结果,它们之间彼此竞争又相互关联。为实现无空洞和无缺陷电镀,除了改进添加剂的单个性能外,还需要确定几种添加剂同时存在时各添加剂浓度的恰当值,使三者之间互相平衡,才能达到良好的综合性能,得到低电阻率、结构致密和表面粗糙度小的铜镀层。

尽管使用有机添加剂可实现深亚微米尺寸的铜电镀,但往往会有微量的添加剂被包埋在铜镀层中。对于镀层来说,这些杂质可能会提高电阻系数,并且使铜在退火时不太容易形成大金属颗粒。

图3 电镀铜表面添加剂作用示意图

A= Accelerator S= Suppressor

L= Leveler Cl= Chloride Ion

电镀过程中添加剂不断地被消耗,为了保证镀层的品质,需要随时监控添加剂的浓度。目前主要使用闭环的循环伏安剥离法(Cylic Voltammetric Stripping,CVS)来监测电镀液的有机添加剂含量。CVS测量仪器的主要供应商是美国ECI公司。CVS尽管硬件成本低,但它很难反映出几种添加剂组分浓度同时改变的准确情况,高效液相色谱(High Performance Liquid Chromatography,HPLC)分析技术有望能替代CVS。

3.脉冲电镀和化学镀

在铜互连中的应用

在目前的集成电路制造中,芯片的布线和互连几乎全部是采用直流电镀的方法获得铜镀层。但直流电镀只有电流/电压一个可变参数,而脉冲电镀则有电流/电压、脉宽、脉间三个主要可变参数,而且还可以改变脉冲信号的波形。相比之下,脉冲电镀对电镀过程有更强的控制能力。最近几年,关于脉冲电镀在集成电路铜互连线中的应用研究越来越受到重视[3,4]。

脉冲电镀铜所依据的电化学原理是利用脉冲张驰增加阴极的活化极化,降低阴极的浓差极化,从而改善镀层的物理化学性能。在直流电镀中,由于金属离子趋近阴极不断被沉积,因而不可避免地造成浓差极化。而脉冲电镀在电流导通时,接近阴极的金属离子被充分地沉积;当电流关断时,阴极周围的放电离子又重新恢复到初始浓度。这样阴极表面扩散层内的金属离子浓度就得到了及时补充,扩散层周期间隙式形成,从而减薄了扩散层的实际厚度。而且关断时间的存在不仅对阴极附近浓度恢复有好处,还会产生一些对沉积层有利的重结晶、吸脱附等现象。脉冲电镀的主要优点有:降低浓差极化,提高了阴极电流密度和电镀效率,减少氢脆和镀层孔隙;提高镀层纯度,改善镀层物理性能,获得致密的低电阻率金属沉积层。

除了电镀以外,还有一种无需外加电源的沉积方式,这就是化学镀。化学镀不同于电镀,它是利用氧化还原反应使金属离子被还原沉积在基板表面,其主要特点是不需要种籽层,能够在非导体表面沉积,具有设备简单、成本较低等优点。化学镀目前在集成电路铜互连技术中的应用主要有:沉积CoWP等扩散阻挡层和沉积铜种籽层。最近几年关于化学镀铜用于集成电路铜互连线以及沟槽填充的研究亦成为一大热点,有研究报道通过化学镀同样可以得到性能优良的铜镀层[5,6]。但是化学镀铜通常采用甲醛做为还原剂,存在环境污染的问题。

4.铜互连工艺发展趋势

使用原子层沉积(ALD ,Atomic Layer Deposition)技术沉积阻挡层和铜的无种籽层电镀是目前铜互连技术的研究热点[7]。

在当前的铜互连工艺中,扩散阻挡层和铜种籽层都是通过PVD工艺制作。但是当芯片的特征尺寸变为45nm或者更小时,扩散阻挡层和铜种籽层的等比例缩小将面临严重困难。首先,种子层必须足够薄,这样才可以避免在高纵宽比结构上沉积铜时出现顶部外悬结构,防止产生空洞;但是它又不能太薄。其次,扩散层如果减薄到一定厚度,将失去对铜扩散的有效阻挡能力。还有,相对于铜导线,阻挡层横截面积占整个导线横截面积的比例变得越来越大。但实际上只有铜才是真正的导体。例如,在65nm工艺时,铜导线的宽度和高度分别为90nm和150nm,两侧则分别为10nm。这意味着横截面为13,500 nm2的导线中实际上只有8,400 nm2用于导电,效率仅为%[7]。

目前最有可能解决以上问题的方法是ALD和无种籽电镀。使用ALD技术能够在高深宽比结构薄膜沉积时具有100%台阶覆盖率,对沉积薄膜成份和厚度具有出色的控制能力,能获得纯度很高质量很好的薄膜。而且,有研究表明:与PVD阻挡层相比,ALD阻挡层可以降低导线电阻[7]。因此ALD技术很有望会取代PVD技术用于沉积阻挡层。不过ALD目前的缺点是硬件成本高,沉积速度慢,生产效率低。

此外,过渡金属-钌可以实现铜的无种籽电镀,在钌上电镀铜和普通的铜电镀工艺兼容。钌的电阻率(~7 μΩ-cm),熔点(~2300℃),即使900℃下也不与铜发生互熔。钌是贵金属,不容易被氧化,但即使被氧化了,生成的氧化钌也是导体。由于钌对铜有一定的阻挡作用,在一定程度上起到阻挡层的作用,因此钌不仅有可能取代扩散阻挡层常用的Ta/TaN两步工艺,而且还可能同时取代电镀种籽层,至少也可以达到减薄阻挡层厚度的目的。况且,使用ALD技术沉积的钌薄膜具有更高的质量和更低的电阻率。但无种籽层电镀同时也为铜电镀工艺带来新的挑战,钌和铜在结构上的差异,使得钌上电镀铜与铜电镀并不等同,在界面生长,沉积模式上还有许多待研究的问题。

5.结语

铜互连是目前超大规模集成电路中的主流互连技术,而电镀铜是铜互连中的关键工艺之一。有机添加剂是铜电镀工艺中的关键因素,各种有机添加剂相互协同作用但又彼此竞争,恰当的添加剂浓度能保证良好的电镀性能。在45nm或更小特征尺寸技术代下,为得到低电阻率、无孔洞和缺陷的致密铜镀层,ALD和无种籽电镀被认为是目前最有可能的解决办法。此外,研究开发性能更高的有机添加剂也是途径之一,而使用新的电镀方式(比如脉冲电镀)也可能提高铜镀层的质量。

参考文献

[1]Tantavichet N, Pritzker of plating mode, thiourea and chloride on the morphology of copper deposits produced in acidic sulphate solutions [J]. Electrochimica Acta, 2005, 50: 1849-1861

[2]Mohan S, Raj V. The effect of additives on the pulsed electrodeposition of copper [J]. Transactions of the Institute of Metal Finishing, 2005, 83(4): 194-198

[3]Y. Lee, Y.-S. Jo, Y. Roh. Formation of nanometer-scale gaps between metallic electrodes using pulse/DC plating and photolithography [J]. Materials Science and Engineering C23 (2003): 833-839

[4]Song Tao, D Y , mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition [J]. Nanotechnology 17 (2006) 65?78

[5]王增林,刘志鹃,姜洪艳等。 化学镀技术在超大规模集成电路互连线制造过程的应用 [J]. 电化学, May 2006 :125-133

[6]Rajendra K. Aithal, S. Yenamandra and Gunasekaran, etc. Electroless copper deposition on silicon with titanium seed layer [J]. Materials Chemistry and Physics 98 (2006) 95?102

电子电镀技术【第三篇】

关键词:集成电路;电镀;磷铜;阳极;

中图分类号:

Phosphorized Copper Anode in ULSI and studies on related problems

GAO Yan1,2,WANG Xin-ping1,2,HE Jing-jiang1,2,LIU Hong-bin1,2,JIANG Xuan1,2,JIANG Yu-hui1,2

(General Research Institute for Non-ferrous Metals, Beijing 100088,China)

(GRIKIN Advanced Materials Co., Ltd., Beijing 102200,China)

Abstract: With the development of semiconductor technology, copper interconnect is popular technology in VLSI. Damascence process is used to plate copper. The phosphorized copper anode plays an important role in plating solution. The article analyzes the Influence factors of plating quality which is the content of phosphor and oxygen, purity and grain size.

Key words: IC;plating;phosphorized copper;anode

1 前言

电镀铜层因其具有良好的导电性、导热性和机械延展性等优点而被广泛应用于电子信息产品领域,电镀铜技术也因此渗透到了整个电子材料制造领域,从印制电路板(PCB)制造到IC 封装,再到大规模集成线路(芯片)的铜互连技术等电子领域都离不开它,因此电镀铜技术已成为现代微电子制造中必不可少的关键电镀技术之一。大规模集成电路中广泛采用电镀铜工艺,制备铜互联线。因此铜的电镀工艺,以及电镀阳极的选择越来越成为集成电路行业关注的焦点。

2 集成电路的电镀铜工艺及磷铜阳极

集成电路的电镀铜工艺

在大规模集成电路行业中,由于铜的刻蚀非常困难,因此铜互连采用双嵌入式工艺,即双大马士革工艺(Dual Damascene)。该工艺是在刻好的沟槽内先溅射扩散阻挡层和铜种籽层, 然后通过电沉积(电镀)的方法在沟槽内填充铜,最后采用CMP( 化学机械抛光) 的方法实现平坦化(图1)。

电镀铜是完成铜填充的主要工艺(图1中③),该工艺要求在制备超微结构刻槽的铜连线过程中电镀铜必须具有很高的凹槽填充能力,因此就对电镀过程中的电镀阳极,电镀液,有机添加剂等的要求很高,特别是电镀用磷铜阳极的要求就更高。

集成电路用磷铜阳极通常是由高纯磷铜合金构成;铜电镀液通常由硫酸铜、硫酸和水组成。在电镀溶液中,当电源加在带有铜种子层的硅片( 阴极) 和磷铜( 阳极) 之间时, 溶液中产生电流并形成电场。然后,磷阳极的铜发生反应转化成铜离子和电子,同时阴极也发生反应,阴极附近的铜离子与电子结合形成镀在硅片表面的铜,铜离子在外加电场的作用下,由阳极向阴极定向移动并补充阴极附近的浓度损耗,如图2所示。电镀的主要目的是在硅片上沉积一层致密、无孔洞、无缝隙和其它缺陷、分布均匀的铜。电镀后的表面应尽可能平坦, 以减少后续CMP 工艺中可能出现的凹坑和腐蚀问题[1]。

电镀铜工艺为何使用磷铜阳极

在早期的电镀过程中,采用的是纯铜作为阳极,由于电镀液中含有硫酸,使得纯铜阳极在电镀液中溶解很快,导致电镀液中的铜离子迅速累积,失去平衡。另一方面纯铜阳极在溶解时会产生少量一价铜离子,它在镀液中很不稳定,通过歧化反应分解成为二价铜离子和微粒金属铜,在电镀过程中很容易在镀层上面成为毛刺。为消除阳极一价铜的影响,人们最早使用阳极袋,但很快便发现泥渣过多妨碍了镀液的循环。后改用无氧高导电性铜阳极(OFHC),虽然泥渣减少了,但仍不能阻止铜金属微粒的产生,于是又采用定期在镀液中加入双氧水使一价铜氧化成二价铜,但此法在化学反应中要消耗一部分硫酸,导致镀液中的硫酸质量浓度下降,必须及时补充,同时又要补充被双氧水氧化而损耗的光亮剂,增加了电镀成本。

1954年美国Nevers等人[2]在纯铜中加入少量的磷作阳极时,发现阳极表面生成一层黑色胶状膜(Cu3P),在电镀时阳极溶解几乎不产生铜粉,泥渣极少,零件表面铜镀层不会产生毛刺。这是由于含磷铜阳极的黑色膜具有导电性能,其孔隙又不影响铜离子自由通过,加快了一价铜的氧化,阻止了一价铜的积累,大大地减少了镀液中一价铜离子;同时又使阳极的溶解与阴极沉积的效率渐趋接近,保持了镀铜液中铜含量平衡。美国福特汽车公司使用这种含磷铜阳极的经验证明既保证了镀铜层质量,又节约电镀光亮剂了20%,降低了成本。从此以后,磷铜阳极在酸性镀铜行业中被广泛采用了,然后又逐渐被集成电路行业大规模使用。

3 影响集成电路

用磷铜阳极性能的主要因素

影响集成电路用磷铜阳极性能的主要因素有:磷含量,原料铜的纯度,氧含量和晶粒尺寸。

磷铜阳极的磷含量

磷能够赋予铜阳极优良的电化学性能。添加磷元素后,铜阳极表面生成一层具有特殊性能的黑色阳极膜。保加利亚学者Rashkov等人[3]研究了这种阳极表面黑色膜,主要成分是Cu3P,其具有金属导电性能,这样就解释了黑色膜不会使阳极钝化的原因。他们认为磷的作用在于含磷铜阳极溶解时产生的一价铜生成Cu3P,从而阻止了歧化反应的产生。

阳极中磷的含量应该保持适当,磷含量太低,阳极黑膜太薄,不足以起到保护作用;含磷量太高,阳极黑膜太厚,导致阳极屏蔽性钝化,影响阳极溶解,使镀液中铜离子减少;无论含磷量太低或太高都会增加添加剂的消耗。

关于集成电路用磷铜阳极中磷的含量,根据所采用的加工工艺,以及生产技术水平不同,各研究学者的意见也不同,如表1所示。

阳极的磷含量国内多为%,主要是由于国内生产设备和工艺落后,搅拌不均匀,不能保证磷元素在阳极内部的分布均匀,因此只能够加入过量的磷来保证元素分布。国外的研究表明,磷铜阳极中的磷含量达到%以上时,既有黑膜形成,但是膜过薄,结合力不好。但是当磷含量超过%时,磷含量又过高,黑膜太厚阳极泥渣太多,阳极溶解性差,导致镀液中铜含量下降。因此,阳极磷含量以-%为佳,最佳为-%。国外采用电解或无氧铜和磷铜合金做原料,用中频感应电炉熔炼,原料纯度高,磷含量容易控制。采用中频感应,磁力搅拌效果好,铜磷熔融搅拌均匀,自动控制,这样制造的铜阳极磷分布均匀,溶解均匀,结晶细致,晶粒细小,阳极利用率高,有利于镀层光滑光亮,减少了毛刺和粗糙缺陷[2]。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

随着大规模集成电路引入酸性电镀铜技术的发展,晶圆上的更细线宽、更小孔径、线路的密集化和多层化对铜镀层的要求就越来越严格。镀层的硬度、晶粒的精细、小孔分散能力以及镀层的延展性等物理化学特性要求磷铜阳极的质量更加的精细。同时由于电镀槽的实时监控系统和各性能参数的SPC控制,要求磷铜阳极的稳定性就越来越高。目前国际上主流集成电路用磷铜阳极的磷含量通常要求为-%,这样减少了磷元素的波动,使得电镀阳极的物理化学参数波动更加小,更加可控。但是,这对熔炼、锻造等加工工艺的要求也就更高了。目前对于装备精良,工艺设计稳定的现代化加工企业来说,是完全有能力将集成电路用磷铜阳极的磷含量控制在-%的。

磷铜阳极的纯度

对于每一种阳极,电镀公司都希望阳极是由高纯铜制备而来的,但是往往受到价格和产品要求等因素的影响。常规的磷铜阳极都是采用电解铜、无氧铜和磷铜合金来制备的。无氧铜的含氧量为3ppm,杂质极少。由于氧含量极低且固定,因此基本不产生磷的氧化物,基本不消耗磷,所以磷含量很容易控制,电解铜的纯度一般为%,杂质含量也很少,也容易控制,所以国内外不少厂家采用电解铜为原料。但是,制备磷铜阳极一定不能采用杂铜或回收铜为原料,因为回收的废铜内部杂质种类很多,往往含有过量的铁、镍、锡和银等元素,这些元素过多将污染阳极,从而影响电镀效果。同时,由于氧含量不确定而含磷量又加得少,造成磷含量失控,严重者导致电镀报废。

对于集成电路用磷铜阳极来说,由于使用的环境更加苛刻,要求的电镀效果更加精细,就要求阳极通常都是由高纯铜(铜含量大于%)来制备的。这样才能够保证后续加入磷铜中间合金不会明显影响杂质含量,满足集成电路电镀的要求。表2列出了国内的几家主要的磷铜阳极生产厂家的产品和集成电路用磷铜阳极对于杂质含量的要求。如表2可知,国内的生产厂家在杂质含量的控制上各有不同,但都无法满足集成电路用磷铜阳极的要求。集成电路用磷铜阳极相较与普通阳极,要求控制的杂质种类更多,更加苛刻。对于铜原料纯度的要求要高出普通阳极至少一个数量级以上。

磷铜阳极的晶粒尺寸

随着集成电路封装和晶圆电镀铜的发展,除了要求电镀过程中形成一层致密、均匀、无空洞和无缝隙的铜镀层外,还要求通过电镀来解决高厚径比结构、微通孔和多层通孔电镀的问题。这就要求磷铜阳极的晶粒尺寸要细小均匀,同时磷含量分布均匀。因为只有这样才能保证黑色的Cu3P镀膜均匀,从而保证在相同电流和酸性环境条件下,Cu2+ 的电离以及结合均匀,形成均一的镀膜。

Kenji Yajima[10] 等人认为电镀阳极的晶粒尺寸和大小在电镀过程中对黑膜的影响很大,但它最好为再结晶结构,这样方便黑膜的形成。小的晶粒尺寸无疑是最优的模式,特别是晶粒尺寸小于10μm是最优的尺寸,但是考虑到成本的因素,平均晶粒尺寸在10-50μm都是比较好的。再结晶后平均晶粒尺寸如果超过50μm,阳极表面形成的黑膜趋向于分离。因此最优的晶粒尺寸应为15-35μm。

图3显示了不同晶粒尺寸的集成电路用磷铜阳极的微观组织照片。由于磷的质量百分含量都约为%左右,因此磷元素都以固溶的形态存在于基体中。晶界上没有明显的第二相或其它组织,因此是典型的纯铜微观组织结构。在图3(a)中可以看到不同的晶粒尺寸,有的很小约几微米,有的很大约几百微米,这样的组织结构是非常不均匀的,可能导致富含在晶内或晶界的P元素分布很不均匀,从而导致在电镀过程中Cu3P黑膜的膜厚不均匀,影响电镀效果,因此这样的组织是要尽量避免的。图(b)和图(c)的平均晶粒尺寸分别为10μm和42μm,而且从金相组织照片看,晶粒分布均匀,方向随机,这样的组织使得P元素的分布均匀,Cu3P黑膜的膜厚均匀,电镀效果会非常好。图(d)的晶粒尺寸约为158μm,由于晶粒过大,很容易引起Cu3P黑膜不够致密,这样使得Cu2+ 的电离速度不相同,引起镀层不够致密,厚度不够均匀,此类组织也不是最佳的组织结构。

在制备磷铜阳极的过程中,由于通常都采用的高纯铜进行熔炼,在凝固过程中,由于杂质含量少,往往形成大晶粒尺寸的磷铜铸锭。然后,再通过塑性变形和热处理结合的方法来细化晶粒尺寸,以满足集成电路行业的要求。

磷铜阳极中的含氧量

磷铜阳极中本身不希望含有大量的氧,因为当氧含量高时,极易生产Cu2O和CuO的两种化合物,会导致Cu2O和CuO分布于晶界处,分布不均匀,影响电镀效果。由于含氧量的不均匀,会导致磷铜阳极电解时产生阳极钝化,使得阳极失去了原有的特性,电镀平衡破坏,影响电镀质量。因此,专利[10]认为,如果O含量高于2ppm, 电极表面的黑膜,很容易受到破坏,而O含量小于时,从生产的角度和成本控制的角度来说,都过高。因此集成电路用磷铜阳极的氧含量在-2ppm比较合适,最优的氧含量为

4 结论和展望

采用双大马士革工艺(Dual Damascene)制备的集成电路互连线要求的磷铜阳极必须具备如下条件:① 磷元素的含量在%-%,且分布均匀。②制备的磷铜阳极的高纯铜原料至少保证纯度大于%。③磷铜阳极的最佳晶粒尺寸为小于50微米,且晶粒尺寸均匀无分层。④磷铜阳极的含氧量在为佳。

集成电路互连线用磷铜阳极的研究正在朝着大尺寸、长寿命和低消耗的方向发展。还有很多方面都有待研究:如何通过合理的熔炼方式、冷却方式和热处理方式保证磷元素的分布均匀;如何通过合理的变形工艺和热处理工艺,保证晶粒尺寸的细小,均匀,无明显的分层现象;如何合理的设计阳极的表面形状,增大溶液接触面积,保持电镀液的稳定性;如何通过调整电流参数、添加剂、硫酸和硫酸铜等参数来得到低电阻、高致密度和平整的镀层等。

参考文献

[1] 徐赛生,曾磊,顾晓清等,添加剂对铜互连线脉冲电镀的影响[J];中国集成电路,2008 :61-64

[2] 程良,邝少林,周腾芳,再谈硫酸盐光亮镀铜的磷铜阳极[J],电镀与涂饰,1999 :20-26

[3] St. Rashkov, L. Vuchkov, The kinetics and mech- anism of the anodic dissolution of phosphorus- containing copper in bright copper plating electrolytes[J], Surface technology 14(1981) 309-321

[4] 沈希宽等, 印刷电路技术,北京,科学出版社,1987:204

[5] 吴以南等, 材料表面技术及其应用手册(电镀篇),北京,机械工业出版社,1998:123

[6] 张立轮,镀铜工艺中基础电镀材料的技术发展及进步[J],印刷电路信息,2004 :21-25

[7] 赵金敏,铜都铜业铜材厂磷铜产品营销环境分析[J],铜陵职业技术学院学报,2006 :37-39

[8] 丁士启,王金海,李卫,一种阳极磷铜合金材料的加工方法[P],CN 100453667C,2

[9] 相场玲宏,冈部岳夫,电解镀铜法、电解镀铜的磷铜阳极和利用所述方法及阳极镀铜的半导体晶片[P],WO2003/078698,

[10] Kenji Yajima, Akihiro Kakimoto, Hideyuki Ikenoya, Phosphorized copper anode for electroplating[P], US 6783611 B2,

[11] 王为、刘学雷、巩运兰;硫酸盐镀铜溶液中铜阳极性能的研究[J],材料保护,2001 :10-11

作者简介

高岩,工学博士,工程师,主要研究方向为高纯金属靶材、微电子和光电子材料、贵金属材料等。

电子电镀技术【第四篇】

Abstract: Alloy plating has incomparable advantages over hot melting alloy and single-metal alloy. With the constant improvement of alloy plating techniques in China, the downstream industry of alloy plating including mechanical industry, hardware, appliances, electronics and so on are developing rapidly, which provides a broad market for the alloy electroplating industry. This article briefly introduces the characteristics of alloy plating, conditions and types of codeposition and the development trend.

关键词: 合金电镀;沉积合金;合金共沉积

Key words: alloy plating;deposition of alloy;alloy codeposition

中图分类号: 文献标识码:A 文章编号:1006-4311(2013)24-0044-02

0 引言

合金电镀就是在一个镀槽中同时沉积含有两种或两种以上金属元素的镀层。大约在1835-1845年第一次镀出了合金镀层,这个时代也出现了新单金属电镀。但是直到20世纪20年代合金镀层还很少在工业上得到真正的应用,这主要是由于合金电镀比单金属电镀更加复杂和困难。目前,研究过的电镀合金体系已经超过了230多种,应用到工业的大约有30多种,比单金属镀层的种类要多,因此,各种合金镀层已经被逐步研究和应用。

1 合金电镀的特点

电镀合金与热冶合金相比具有以下特点:

①容易获得如NI-P合金这样的组织致密且性能优异的非晶态合金。

②可获得热熔相图没有的合金,如δ-铜锡合金。

③在相同的合金成分下,与热熔合金相比,电镀合金具有硬度高以及延展性差的特点,如Ni-P、Co-P合金。

④容易获得高熔点与低熔点金属组成的合金,如Sn-Ni合金。

与单金属镀层相比,合金镀层有如下主要特点:

①能够得到单一金属得不到的外观。合金镀层通过成分设计以及工艺控制可以得到不同色调的如Ag合金,彩色镀Ni及仿金合金等合金镀层,具有更好的装饰效果。②合金镀层结晶更细致,镀层更平整、光亮。③相对组成合金镀层的单金属而言,比它们更具有耐磨、耐蚀以及更耐高温的性质,并且强度和硬度也得到了显著提高。但是延展性以及韧性却有所降低。④可以获得非晶结构镀层。⑤不能从水溶液中单独电镀的W,Mo,Ti,V等金属可与铁族元素(Fe,Co,Ni)共沉积形成合金。⑥能获得单一金属没有的如导磁性、减磨性(自润滑性)、钎焊性等特殊的物理性能。

2 沉积合金的条件

①在两种金属中,至少有一种金属可以从其盐的水溶液中沉积出来。

②共沉积的两种金属的沉积电位必须十分接近。如果两种金属的电位相差太大,那么电位较正的金属就会被优先镀出来,甚至出现电位较负的金属不能析出,这样一来就不能形成合金镀层。

现以二元合金为例讨论一下:

设二金属元素分别为A和B,根据能斯特方程,它们的析出电位可分别表示为:

E析=E平-ΔE,所以

E析A=EOA+(RT/NAF)㏑[AA]+ΔEA

E析B=EOB+(RT/NBF)㏑[AB]+ΔEB

其中:EOA,EOB——A,B的标准电极电位

NA,NB——A,B的离子价数

AA,AB——A,B金属离子的活度

ΔEA,ΔEB——A,B的过电位

要使A,B同时在阴极上共沉积的必要条件是:E析A

≈E析B

即:EOA+(RT/NAF)㏑[AA]+ΔEA≈EOB+(RT/NBF)㏑[AB]+ΔEB

上式表明:两种金属在同一阴极电位下共沉积的必要条件与两种金属的标准电极电位、离子活度及阴极极化程度有关。

因此,一般采用以下办法实现金属共沉积:

1)改变镀液中金属离子的浓度:增大较活泼金属的浓度可以使其电位正移,从而可以使多种电位差相差较大的金属的电位相互接近,此外,通过降低较贵金属离子的浓度促使其电位负移也可以实现同样的作用。2)选用合适的络合剂:在使得电位差较大的金属离子实现共同沉积的方法中,此方法是最有效的。3)采用合适的添加剂:电镀液中由于含有的添加剂一般较少,因此很少会影响金属的平衡电位。但是有些添加剂却能够显著的增大或降低阴极极化并且能够明显地改变金属的析出电位从而实现共同沉积。如为了使得铜、铝离子实现共同沉积可以添加明胶。

3 合金共沉积的类型

①正则共沉积。其主要受到扩散的控制,电镀参数会影响金属离子在阴极扩散层的浓度,而其浓度又会影响合金镀层的组成。因此,通过降低电流密度、增加镀液中金属的总含量以及增加搅拌等以增加阴极扩散层中金属离子的浓度,可以有效的增加电位较正金属在合金中的含量。正则共沉积一般出现在单盐镀液中。

②非正则共沉积。此过程主要受到阴极电位的控制。在此过程中,虽然某些参数对于合金沉积的影响遵守扩散理论,但是另外一些却与此理论相矛盾。当采用络合物沉积的镀液时容易出现非正则共沉积,并且各电镀参数对合金共沉积的影响不像正则共沉积那样明显。

③平衡共沉积。即两种金属从处于化学平衡的镀液中共沉积的过程。其最主要的特点:在低电流密度下(阴极极化不明显)的合金沉积层中的金属含量比等于镀液中金属的含量比。平衡共沉积比较少见。

④异常共沉积。由于异常共沉积不遵循电化学理论,并且优先沉积的是电位较负的金属,并且在反应过程中还会出现其他特殊控制因素而超脱了一般的正常概念,因此称为异常共沉积。对于给定的某种浓度和某种工艺条件下才出现异常共沉积,因此比较少见。

⑤诱导共沉积。钼、钨和钛等金属可以与铁族金属实现共析,但是却不能通过水溶液单独沉积,这个过程就是诱导共析。通常我们所称的诱导金属指的是能促使难沉积的金属实现共沉积的铁族金属。诱导共沉积与其他共沉积相比更难以推测合金受各个电镀参数的影响。

4 合金电镀的发展趋势

随着我国合金电镀工艺水平的不断提高,合金电镀下游行业包括机械工业、五金、家电、电子等行业都在不断快速发展,为合金电镀行业提供了广阔的市场空间,也带动了合金电镀市场的不断增长。2010年我国合金电镀市场需求由2006年的亿元增长至2010年的亿元,年增长率达到%。

目前我国的工业制造正处于产业转型升级阶段,笔者认为今后我国合金电镀工业的发展只要坚持科学发展,注重以人为本、和谐环境,更加全面、协调、可持续的发展这个主题;向减少污染、减少能源和资源消耗,注重技术提升与创新的方向发展,必将提高合金电镀核心竞争力,在工业规模继续扩大,产业结构不断优化升级的发展背景下,我国合金电镀的市场需求也将呈现出不断扩大的发展

趋势。

我们国家要成为电镀强国,合金电镀的品质提升是一个重要的前提与保障,才能为制造业的发展提供更大的发展平台和技术保障。随着国家政策对新材料行业的鼓励和扶持,合金电镀生产企业应不断加大技术和资金的投入,逐步开发出具有高竞争力、高附加值的绿色环保型产品和服务,为实现我国电镀行业绿色生产做出重大贡献。

参考文献:

[1]田伟,吴向清,谢发勤。Zn-Ni合金电镀的研究进展[J].材料保护,2004,37(4):26-30.

[2]黄敬东,吴俊,王银平等。碱性锌镍合金电镀述评[J].电镀与精饰,2003,25(2):5-7.

31 571046
");