六年级奥数题答案及解析热选优推10篇
【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“六年级奥数题答案及解析热选优推10篇”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!
六年级奥数题答案及解析【第一篇】
现有甲、乙、丙三种硫酸溶液。如果把甲、乙按照3:4的质量比混合,得到浓度为%的硫酸;如果把甲、乙按照2:5的质量比混合,得到浓度为%的硫酸;如果把甲、乙、丙按照5:9:10的质量比混合,可以得到浓度为21%的硫酸,请求出丙溶液的浓度。
答案与解析:
巧用溶度问题中的比例关系。
甲乙3:4混合变成2:5,混合液溶度下降了3%。
相当于7份中的1份甲液换成了乙液,溶度下降了3%。
那么继续把2份甲换成乙,得到的就是纯乙溶液的溶度:%-3%×2=%。
同理,也可以相当于7份中的1份乙液换成了甲液,溶度上升了3%。
那么把4份乙换成甲,得到的就是纯甲溶液的溶度:%+3%×4=%。
又因为甲、乙、丙按照5:9:10的质量比混合,可以得到浓度为21%的硫酸。
甲、乙按照3:4的质量比混合,得到浓度为%的硫酸。
甲、乙按照2:5的质量比混合,得到浓度为%的硫酸。
六年级奥数题答案及解析【第二篇】
答案与解析:要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以要分两大类考虑。
第一类,两个数字同为奇数。由于放两个正方体可认为是一个一个地放。放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3*3=9(种)不同的情形。
第二类,两个数字同为偶数,类似第一类的讨论方法,也有3*3=9(种)不同情形。最后再由加法原理即可求解。
3*3+3*3=18(种)。
出自
答:向上一面数字之和为偶数的情形有18种。
六年级奥数题答案及解析【第三篇】
答案与解析:
分析:题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了。
解:(48+8)÷(6-4)。
=56÷2。
=28(天)。
6×28-8=160(个)或4×28+48=160(个)。
答:妈妈买回苹果160个,计划吃28天。
六年级奥数题答案及解析【第四篇】
答案与解析:
顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)。
无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=(秒)。
答案与解析:
假设ab两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时).
答案与解析:
本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校)。
六年级奥数题答案及解析【第五篇】
张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利万元.这套房子原标价()万元.
分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利万元,得出万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.
解答:解:÷(1+30%-95%),
=÷35%,
=30(万元),
答:这套房子原标价30万元;。
故答案为:30.
点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出对应的百分数,列式解答即可.
文档为doc格式。
六年级奥数题答案及解析【第六篇】
六年级的同学们马上就要面临小升初的考试了,所以一定要在这段时间不能松懈,把每天的练习坚持到底你才能有更大的收获。
答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标。当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间。乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80x9=720(米),甲距目()标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟)。
另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900x2(100+80)=10分钟。
六年级奥数题答案及解析【第七篇】
1、有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的倍.
解答:
(汽车速度-自行车速度)×10=(自行车+步行)×10。
即:汽车速度-自行车速度=自行车速度+步行速度。
汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍。
所以汽车速度=(2×3+1)×步行速度=步行速度×7。
故答案为:7。
2、兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走米,妹每秒走米,他们第十次相遇时,妹妹还需走()米才能回到出发点.
分析:第十次相遇,妹妹已经走了:30×10÷(+)×=144(米),144÷30=4(圈)…24(米),30-24=6(米),还要走6米回到出发点。
解答:
解:第十次相遇时妹妹已经走的路程:
30×10÷(+)×。
=300÷×。
=144(米)。
144÷30=4(圈)…24(米)。
还要走6米回到出发点。
故答案为6米。
3、王明从a城步行到b城,同时刘洋从b城骑车到a城,小时后两人相遇.相遇后继续前进,刘洋到a城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达b城后立即折回。两人第二次相遇后()小时第三次相遇。
分析:由题意知道两人走完一个全程要用小时.从开始到第三次相遇,两人共走完了三个全程,故需小时.第一次相遇用了一小时,第二次相遇用了40分钟,那么第二次到第三次相遇所用的时间是:小时-小时-45分钟据此计算即可解答。
解答:
解:45分钟=小时。
从开始到第三次相遇用的时间为:
×3=(小时)。
第二次到第三次相遇所用的时间是:
。
=。
=(小时)。
答:第二次相遇后小时第三次相遇。
故答案为:。
六年级奥数题答案及解析【第八篇】
答案与解析:(1)最佳修理顺序为先处理修复时间最短的车床,依次为3分钟、8分钟、9分钟、15分钟、29分钟,按此顺序,停产时间最少:3*5+8*4+9*3+15*2+29*1=133(分钟)最低经济损失:133*10=1330(元)。
(2)如果有两名修理工,一名修理工按3分钟,9分钟,29分钟,修理顺序,另一名修理工按8分钟,15分钟,顺序修理。
最少停产时间3*3+(8+9)*2+(15+29)*1=87(分钟)。
最低经济损失:10*87=870(元)。
六年级奥数题答案及解析【第九篇】
答案与解析:
那么甲效率提高三分之一后,合作总效率为8+乙效率。
所以根据效率比等于时间的反比,6+乙效率:8+乙效率=5:6,得出乙效率为4。
原来总效率=6+4=10。
乙效率降低四分之一后,总效率为6+3=9。
所以同样根据效率比等于时间的反比可得:10:9=规定时间+75:规定时间。
解得规定时间为675分。
答:规定时间是11小时15分钟。
答案与解析:“第一次相遇点距b处60米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距a地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以a、b相距=180-10=170米。
答案与解析:
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
答案与解析:
10%与30%的盐水重量之比为(30%-22%):(22%-10%)=2:3,因此需要30%的盐水20÷2×3=30克。
瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的a、b两种酒精,瓶子里的酒精浓度变为14%.已知a种酒精的'浓度是b种酒精的2倍,答案与解析:
依题意,a种酒精浓度是b种酒精的2倍.设b种酒精浓度为x%,则a种酒精浓度为2x%.a种酒精溶液10o克,因此100×2x%为100克酒精溶液中含纯酒精的克数.b种酒精溶液40o克,因此400×x%为400克酒精溶液中含纯酒精的克数.
解:设b种酒精浓度为x%,则a种酒精的浓度为2x%.求a种酒精的浓度.
答案与解析:
那么除掉起步的3千米的距离,之后增加的距离为:。
也就是说除起步价距离,增加的距离介于4个2米和5个2米之间。
所以就按照5个2千米来进行收费;。
应该支付的钱数为:8+3×5=23元。
奥数题七。
计算+()。
原式=+。
=13-(+)。
=2。
解:题中的条件,两个不同的骑车速度,行两地路程到达的时间分别是下午1时和上午11时,即后一速度用的时间比前一速度少2小时,为便于比较,可以以行到下午1时作为标准,算出用后一速度行到下午1时,从甲地到乙地可以比前一速度多行15×2=30(千米),这样,两组对应数量如下:
每小时行10千米下午1时正好从甲地到乙地。
每小时行15千米下午1时比从甲地到乙地多行30千米。
上下对比每小时多行15-10=5(千米),行同样时间多行30千米,从出发到下午1时,用的时间是30÷5=6(小时),甲地到乙地的路程是10×6=60(千米),行6小时,下午1时到达,出发的时间是上午7时,要在中午12时到,即行12-7=5(小时),每小时应行60÷5=12(千米)。
答:每小时应行12千米。
六年级奥数题答案及解析【第十篇】
甲、乙、丙、丁四人经常为学校做好事。星期天,校长发现大操场被打扫得干干净净,找来他们四人询问:
甲说:“打扫操场的在乙、丙、丁之中。”
乙说:“我没打扫操场,是丙扫的。”
丙说:“在甲和乙中间有一人是打扫操场的。”
丁说:“乙说的是事实。”
答案与解析:
已知四人中有两人说真话,有两人说的是假话,所以从这一点出发进行推理。
注意乙和丁的说法一致,所以这表明他俩要么同说真话,要么同说假话,同样可以推理出甲和丙也是同说真话或同说假话。但是甲和丙中至少有一个人说真话,因为他们指明了做好事的在四人中,所以甲、丙同说真话,再根据她们说的话可以判断乙是打扫操场的人。