数与代数的知识点精彩14篇

好文 分享 时间:

数与代数涉及数的性质、运算规则、方程解法、函数关系及其图像等知识,如何应用于实际问题解决呢?以下是网友为大家整理分享的“数与代数的知识点”相关范文,供您参考学习!

数与代数的知识点

数与代数的知识点 篇1

 分数和百分数  

1、 分数的意义

把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.

在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;

表示取了多少份的数,叫做分数的分子;

其中的一份,叫做分数单位.

2、 百分数的意义

表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.

百分数通常不写成分数的形式,而用特定的“%”来表示.

百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.

3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.

4、 成数:

几成就是十分之几.

分数的种类

按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数

分数和除法的关系及分数的基本性质

1、 除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.

2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质.

3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.

约分和通分

1、 分子、分母是互质数的分数,叫做最简分数.

2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.

3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.

4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.

5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.

倒数

1、 乘积是1的两个数互为倒数.

2、 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.

3、 1的倒数是1,0没有倒数

分数的大小比较

1、 分母相同的分数,分子大的那个分数就大.

2、 分子相同的分数,分母小的那个分数就大.

3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.

4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.

百分数与折数、成数的互化

例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%.

纳税和利息

税率:应纳税额与各种收入的比率.

利率:利息与本金的百分率.由银行规定按年或按月计算.

利息的计算公式:利息=本金×利率×时间

百分数与分数的区别主要有以下三点:

1.意义不同.

百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一具体数量.如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米.”

因此,百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.

分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等.

2.应用范围不同.

百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.

3.书写形式不同.

百分数通常不写成分数形式,而采用百分号“%”来表示.

如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.

数与代数的知识点 篇2

数的整除

整除的意义

整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)

除尽的意义 

甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0).

约数和倍数

1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数.

2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.

3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数.

奇数和偶数

1、能被2整除的数叫偶数.例如:0、2、4、6、8、10……注:0也是偶数 

2、不能被2整除的数叫基数.例如:1、3、5、7、9……

整除的特征

1、能被2整除的数的特征:个位上是0、2、4、6、8.

2、能被5整除的数的特征:个位上是0或5.

3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除.

质数和合数

1、一个数只有1和它本身两个约数,这个数叫做质数(素数).

2、一个数除了1和它本身外,还有别的约数,这个数叫做合数.

3、1既不是质数,也不是合数.

4、自然数按约数的个数可分为:质数、合数

5、自然数按能否被2整除分为:奇数、偶数

分解质因数

1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.例如:18=3×3×2,3和2叫做18的质因数.

2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.通常用短除法来分解质因数.

3、几个数公有的因数叫做这几个数的公因数.其中最大的一个叫这几个数的最大公因数.

公因数只有1的两个数,叫做互质数.几个数公有的倍数叫做这几个数的公倍数.其中最大的一个叫这几个数的最大公倍数.

4、特殊情况下几个数的最大公约数和最小公倍数.

(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数.

(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积.

奇数和偶数的运算性质

1、相邻两个自然数之和是奇数,之积是偶数.

2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数.

数与代数的知识点 篇3

性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍数(0除外),商不变。

(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化

小数点向右移动一位,原来的数就扩大到原来的10倍;小数点向右移动两位,原来的数就扩大到原来的100倍;小数点向右移动三位,原来的数就扩大到原来的1000倍……

小数点向左移动一位,原来的数就缩小到原来的十分之一……

小数点向左移或者向右移位数不够时,要用“0″补足位。

(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘或者除以相同的数(零除外),分数的大小不变。

(五)分数与除法的关系

被除数÷除数=被除数/除数  
被除数相当于分子,除数相当于分母。

因为零不能作除数,所以分数的分母不能为零。

数与代数的知识点 篇4

运算顺序

小数四则运算的运算顺序和整数四则运算顺序相同。

分数四则运算的运算顺序和整数四则运算顺序相同。

没有括号的混合运算:
同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。
(加法和减法叫做第一级运算。乘法和除法叫做第二级运算。)

有括号的混合运算:
先算小括号里面的,再算中括号里面的,最后算括号外面的。

应用
(一)整数和小数的应用
1 简单应用题

2 复合应用题

( 3 )加法应用题:
a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(4 )  减法应用题:
a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。

(5 )乘法应用题:
a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

( 6)除法应用题:
a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

c 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

(7)常见的数量关系:
总价= 单价×数量       
路程= 速度×时间     
工作总量=工作时间×工效     
总产量=单产量×数量

3典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

数量关系式:数量之和÷数量的个数=算术平均数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)    总数量÷单一量=份数(反归一)

例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

例:修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:
(和+差)÷2 = 大数   
大数-差=小数   
(和-差)÷2=小数       
和-小数= 大数

例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷(倍数+1)=标准数      标准数×倍数=另一个数

例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小货车各有多少辆?

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解法:两个数的差÷(倍数-1 )= 标准数  
标准数×倍数=另一个数。

例:甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米?各减去多少米?

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间

数与代数的知识点 篇5

整数

1 、整数的意义
像-1,-2,-3,0,1,,2,3……这样的数叫整数。

2 、自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。

3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位上的数的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数 28=2×2×7

几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1、1和任何自然数互质。  
     
2、相邻的两个自然数互质。   
     
3、两个不同的质数互质。

4、当合数不是质数的倍数时,这个合数和这个质数互质。例如:15和7互质,14和7不互质。

5、两个合数的公约数只有1时,这两个合数互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、……是2、3的公倍数,6是它们的最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

数与代数的知识点 篇6

(一)数的读法和写法

整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。3000600(读成“三百万六百”或“三百万零六百”都对

整数的写法:先看这个数有几级,再从最高级写起。哪个书屋上一个单位都没有,就在那个数位上写0.

(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 亿。

近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015 省略亿后面的尾数是 13 亿。

四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

大小比较

比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

数与代数的知识点 篇7

小数

1 小数的意义
把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 、 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。例如: 、 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。例如: 、 、 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。例如: …… ……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:π

无限循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做无限循环小数。例如: …… …… ……

一个无限循环小数的小数部分,依次不断重复出现的数字叫做这个无限循环小数的循环节。例如: ……的循环节是“ 9 ” , ……的循环节是“ 54 ” 。

纯无限循环小数:循环节从小数部分第一位开始的,叫做纯无限循环小数。例如: …… ……

混无限循环小数:循环节不是从小数部分第一位开始的,叫做混无限循环小数。 …… ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有 一个数字,就只在它的上面点一个点。例如: …… 简写作  …… 简写作  。

数与代数的知识点 篇8

小数部分  

把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……

这些分数可以用小数表示.如1/10记作,7/100记作

小数点右边第一位叫十分位,计数单位是十分之一();

第二位叫百分位,计数单位是百分之一()……

小数部分最大的计数单位是十分之一,没有最小的计数单位.

小数部分有几个数位,就叫做几位小数.

如是两位小数,是三位小数.

小数的读法

整数部分整数读,小数点读点,小数部分顺序读.

小数的写法

小数点写在个位右下角

小数的性质

小数末尾添0去0大小不变.化简

小数点位置移动引起大小变化

右移扩大左缩小,1十2百3千倍.

小数大小比较

整数部分大就大;整数相同看十分位大就大;以此类推

数与代数的知识点 篇9

运算法则

整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

整数减法计算法则:
相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

整数乘法计算法则:
先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

整数除法计算法则:
先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

小数乘法法则:
先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

除数是整数的小数除法计算法则:
先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

除数是小数的除法计算法则:
先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

同分母分数加减法计算方法:
同分母分数相加减,只把分子相加减,分母不变。

异分母分数加减法计算方法:
先通分,然后按照同分母分数加减法的的法则进行计算。

带分数加减法的计算方法:
整数部分和分数部分分别相加减,再把所得的数合并起来。

分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

分数除法的计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。

数与代数的知识点 篇10

数的互化

  1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
  2. 分数化成小数:分子除以分母。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留两位小数。
  3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
  4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
  5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
  6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
  7. 百分数化成分数:先把百分数改写成分母为100,分子为这个百分数去掉百分号部分的分数,能约分的要约成最简分数。

数与代数的知识点 篇11

分数

1 分数的意义
把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

百分数
表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数表示的两个数量间的关系,而不是表示一种数量,所以不带单位名称。

数与代数的知识点 篇12

分数和百分数的应用

1  分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):
甲是乙较量,乙是标准量,用甲÷乙。
甲比乙多(或少)几分之几(百分之几):
甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)÷乙数
或(甲数减乙数)÷甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

4 百分率
发芽率=发芽种子数÷试验种子数×100%
小麦的出粉率= 面粉的重量÷小麦的重量×100%
产品的合格率=合格的产品数÷产品总数×100%
职工的出勤率=实际出勤人数÷应出勤人数×100%

5  工程问题:
是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系式:
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
工作总量÷工作效率和=合作时间

6  纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

缴纳的税款叫应纳税款。

应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。

利息
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间

数与代数的知识点 篇13

十进制计数法  

一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.

这种计数方法叫做十进制计数法。

整数的读法

从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。

整数的写法

从高位一级一级写,哪一位一个单位也没有就写0.

四舍五入法

求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.

整数大小的比较

位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。

数与代数的知识点 篇14

(一)整数四则运算
1整数加法:
把两个数合并成一个数的运算叫做加法。

2整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
加法和减法互为逆运算。

3整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,0和任何数相乘都得0.   1和任何数相乘都的任何数。
因数× 因数 =积  
 一个因数=积÷另一个因数

4  整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
乘法和除法互为逆运算。
在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

(二)小数四则运算

小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.

小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32

(三)分数四则运算

分数加法:
分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

分数乘法:
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。  分数乘分数表示求一个分数的几分之几是多少。

乘积是1的两个数叫做互为倒数。

分数除法:
分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。

(四)运算定律

  1. 加法交换律:
    两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
  2. 加法结合律:
    三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
  3. 乘法交换律:
    两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
  4. 乘法结合律:
    三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
  5. 乘法分配律:
    两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
  6. 减法的性质:
    从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

通过本文数与代数的知识点的介绍,相信读者对于这些知识点已经有了更深刻的理解和认识。在今后的学习中,我们应不断加强对这些知识点的掌握,不断探索它们的应用和发展,从而更好地应对未来的挑战。

48 4051627
");