六年级奥数题答案及解析样例【精编10篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“六年级奥数题答案及解析样例【精编10篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

六年级奥数题答案及解析【第一篇】

六年级奥数题及答案(高等难度)

的小朋友们,小学频道为你准备了六年级奥数题及答案:奇偶性应用(中等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!

桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。

扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的.花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:逻辑推理(高等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!

数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。

六年级奥数题答案及解析【第二篇】

答案:350分。

分析:当钱数一定,要想买的最多,就要采取最划算的策略:每9个7分钱,首先要考虑50和500中可以分成多少份9个。然后看它们各自的余数是不是5的倍数,如果是,就按每5个4分钱累计,如果还有余数,才考虑每1个1分钱。按此方法,可以把小李和小赵两人各有多少钱计算出来。

详解:因为50÷9=5……5,所以小赵有钱。

5×7+4=39(分)。

又因为500÷9=55……5,所以小李有钱。

55×7+4=389(分)。

因此小李的钱比小赵多。

六年级奥数题答案及解析【第三篇】

答案与解析:单打每张球桌2人,双打每张球桌4人。

如果10桌全是单打,出场的.球员将只有20人。

但是现在有32人出场,多12人。

每拿一桌单打换成双打,参赛的球员多出2人。

要能多出12人,应该有6桌换成双打。

是:6桌双打,4桌单打。

这个单打双打问题,按照题型来看,属于传统的鸡兔同笼问题。上面所用的解法,也是鸡兔同笼问题的常规解法,先假定都是同一种,然后替换。

也可利用中国古代解答鸡兔同笼问题时的“折半”法,算法更简单。

每张球桌沿着中间的球网分成左右两半,只考虑左半边。

单打的球桌左半边站1个人,双打的球桌左半边站2个人。

10张球桌两边共站32个人,左半边共站16个人。

六年级奥数题答案及解析【第四篇】

答案与解析:要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以要分两大类考虑。

第一类,两个数字同为奇数。由于放两个正方体可认为是一个一个地放。放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3*3=9(种)不同的情形。

第二类,两个数字同为偶数,类似第一类的讨论方法,也有3*3=9(种)不同情形。最后再由加法原理即可求解。

3*3+3*3=18(种)。

答:向上一面数字之和为偶数的情形有18种。

六年级奥数题答案及解析【第五篇】

答案与解析:

一位数1-9一共用了9个数字。

三位数中,先考虑100-199的情况。其中,111用了1个数字;100,122…199一共有9个数,每一个都用到了2个数字;101,121,131…191一共9个数,每一个都用到了2个数字;其他的每一个都用到了3个数字。所以一共用了3x(100-9-9-1)+2x9+2x9+1=280.

六年级奥数题答案及解析【第六篇】

先把重点常考的专题学好,我们知道在每个专题里都有核心的知识点,可以这么说,把最简单而又最重要的那些东西掌握好基本上就够了,并不一定非得做太多的题目。比如说行程问题里,一定要熟练运用时间速度路程三个量之间的比例关系来解题。直线形面积问题其实主要就是一个面积比和线段比怎么转化的问题,等等。

每个孩子起步的早晚不同,难免有些内容是别人学过而我没学过的,一旦考到就非常吃亏。那么怎么去补呢,我想也没有必要专门做这个事情,在平时上课的时候,如果老师讲到了你不太会,没学过的地方,给你几个建议:

1.立即举手请老师详细讲解,我相信每一个负责任的老师都会帮你把问题解释清楚的,但你不问老师就很难发现你没懂。

2.课后请教老师,有的同学和家长总觉得下课时间很短,老师没时间帮我讲,其实情况确实如此,但有时候一个问题你想半天没搞懂,可能老师的一句话就会对你有启发,进而把问题弄明白。

3.回家后进一步思考,有很多同学总觉得这个题我不会,好了,那我就不用做了。我经常给我的学生说这样的话:一道题你想了30分钟突然灵机一动想出来了,难道前29分钟的思考就没用了么?事实上前面的29分钟反而是最有用的,因为我要解决这样一个问题的时候遇到了困难,通过思考我把以前学过的方法都用上了(复习以前学过的东西)但还是做不出来,这段时间绝对是有效学习时间因为在思考的'过程中你把你学过的相关内容都复习了一遍,最终无论通过自己还是请教别人把题目做出来后(学到了新的方法,或者巩固了旧知识)都是非常有益的。

时间目前已经非常宝贵,利用的好就能在接下来的各种比拼中取得先机。每天都想一下,今天我学到了些什么东西,我在哪个方面有所提高。只要你每天能找到一个进步的地方,我想你会就觉得数学越来越简单了.切记不要每天只是忙于上课,考试。一定要有消化知识的过程,否则很难取得好成绩,或者说即使突击成功,上了中学也会吃大亏。

计算! 计算! 计算!

之所以写三遍,实在是因为它太重要了,大部分的题目都只需要一个得数,如果费了半天力气想出好办法却把数算错那真是太得不偿失了。我们可以做下面的两件事情:第一,把一些常见的数“背”下来,例如1-30的平方,2的1次方到2的10次方等等,考试的时候一旦用到直接写出正确得数会非常节省时间,因为平均一个题目2分钟,如果20个题目你每个题目省下15秒那么就是5分钟了,某些情况下,时间=分数,像2月5号的考试就有很多同学因为时间不够没做完题。第二,计算能力的训练,每天花10-15分钟做10道计算题,检验自己的正确率,好处有两个,一个是提高计算能力,二是提高在时间紧迫的情况下做题的抗压能力。这些基本能力都是会受用终身的,至少在高考之前如此:)

六年级奥数题答案及解析【第七篇】

张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利万元.这套房子原标价万元.

分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利万元,得出万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.

解答:解:÷(1+30%-95%),

=÷35%,

=30(万元),

答:这套房子原标价30万元;。

故答案为:30.

点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出对应的百分数,列式解答即可.

六年级奥数题答案及解析【第八篇】

1、有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的倍.

解答:

(汽车速度-自行车速度)×10=(自行车+步行)×10。

即:汽车速度-自行车速度=自行车速度+步行速度。

汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍。

所以汽车速度=(2×3+1)×步行速度=步行速度×7。

故答案为:7。

2、兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走米,妹每秒走米,他们第十次相遇时,妹妹还需走()米才能回到出发点.

分析:第十次相遇,妹妹已经走了:30×10÷(+)×=144(米),144÷30=4(圈)…24(米),30-24=6(米),还要走6米回到出发点。

解答:

解:第十次相遇时妹妹已经走的路程:

30×10÷(+)×。

=300÷×。

=144(米)。

144÷30=4(圈)…24(米)。

还要走6米回到出发点。

故答案为6米。

3、王明从a城步行到b城,同时刘洋从b城骑车到a城,小时后两人相遇.相遇后继续前进,刘洋到a城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达b城后立即折回。两人第二次相遇后()小时第三次相遇。

分析:由题意知道两人走完一个全程要用小时.从开始到第三次相遇,两人共走完了三个全程,故需小时.第一次相遇用了一小时,第二次相遇用了40分钟,那么第二次到第三次相遇所用的时间是:小时-小时-45分钟据此计算即可解答。

解答:

解:45分钟=小时。

从开始到第三次相遇用的时间为:

×3=(小时)。

第二次到第三次相遇所用的时间是:

=。

=(小时)。

答:第二次相遇后小时第三次相遇。

故答案为:。

六年级奥数题答案及解析【第九篇】

答案与解析:

那么甲效率提高三分之一后,合作总效率为8+乙效率。

所以根据效率比等于时间的反比,6+乙效率:8+乙效率=5:6,得出乙效率为4。

原来总效率=6+4=10。

乙效率降低四分之一后,总效率为6+3=9。

所以同样根据效率比等于时间的反比可得:10:9=规定时间+75:规定时间。

解得规定时间为675分。

答:规定时间是11小时15分钟。

答案与解析:“第一次相遇点距b处60米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距a地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以a、b相距=180-10=170米。

答案与解析:

首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

答案与解析:

10%与30%的盐水重量之比为(30%-22%):(22%-10%)=2:3,因此需要30%的盐水20÷2×3=30克。

瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的a、b两种酒精,瓶子里的酒精浓度变为14%.已知a种酒精的'浓度是b种酒精的2倍,答案与解析:

依题意,a种酒精浓度是b种酒精的2倍.设b种酒精浓度为x%,则a种酒精浓度为2x%.a种酒精溶液10o克,因此100×2x%为100克酒精溶液中含纯酒精的克数.b种酒精溶液40o克,因此400×x%为400克酒精溶液中含纯酒精的克数.

解:设b种酒精浓度为x%,则a种酒精的浓度为2x%.求a种酒精的浓度.

答案与解析:

那么除掉起步的3千米的距离,之后增加的距离为:。

也就是说除起步价距离,增加的距离介于4个2米和5个2米之间。

所以就按照5个2千米来进行收费;。

应该支付的钱数为:8+3×5=23元。

奥数题七。

计算+()。

原式=+。

=13-(+)。

=2。

解:题中的条件,两个不同的骑车速度,行两地路程到达的时间分别是下午1时和上午11时,即后一速度用的时间比前一速度少2小时,为便于比较,可以以行到下午1时作为标准,算出用后一速度行到下午1时,从甲地到乙地可以比前一速度多行15×2=30(千米),这样,两组对应数量如下:

每小时行10千米下午1时正好从甲地到乙地。

每小时行15千米下午1时比从甲地到乙地多行30千米。

上下对比每小时多行15-10=5(千米),行同样时间多行30千米,从出发到下午1时,用的时间是30÷5=6(小时),甲地到乙地的路程是10×6=60(千米),行6小时,下午1时到达,出发的时间是上午7时,要在中午12时到,即行12-7=5(小时),每小时应行60÷5=12(千米)。

答:每小时应行12千米。

六年级奥数题答案及解析【第十篇】

分析:我们用方程求出他们共同完成的时间,然后运用总时间除以他们制作一个零件的时间,就是要分得的个数.列式解答即可.

:设他们共用x分钟完成这批任务.

甲完成的个数:

2700÷6=450(个);。

乙完成的个数:

2700÷5=540(个);。

丙完成的个数;。

2700÷=600(个);。

答:甲乙丙每人应该分配到450个零件540个零件,600个零件。

:本题先求出他们共同完成的时间,再运用总时间除以他们制作一个零件的时间,就是要分得的个数。

48 2840244
");