六年级奥数题答案题解析专业【精编10篇】

网友 分享 时间:

六年级奥数题答案题解析【第一篇】

六年级的同学们马上就要面临小升初的考试了,所以一定要在这段时间不能松懈,把每天的练习坚持到底你才能有更大的收获。

答案与解析:甲、乙二人开始是同向行走,乙走得快,先到达目标。当乙返回时运动的方向变成了相向而行,把相同方向行走时乙用的时间和返回时相向而行的时间相加,就是共同经过的时间。乙到达目标时所用时间:900100=9(分钟),甲9分钟走的路程:80x9=720(米),甲距目()标还有:900-720=180(米),相遇时间:180(100+80)=1(分钟),共用时间:9+1=10(分钟)。

另解:观察整个行程,相当于乙走了一个全程,又与甲合走了一个全程,所以两个人共走了两个全程,所以从出发到相遇用的时间为:900x2(100+80)=10分钟。

六年级奥数题答案题解析【第二篇】

先把重点常考的专题学好,我们知道在每个专题里都有核心的知识点,可以这么说,把最简单而又最重要的那些东西掌握好基本上就够了,并不一定非得做太多的题目。比如说行程问题里,一定要熟练运用时间速度路程三个量之间的比例关系来解题。直线形面积问题其实主要就是一个面积比和线段比怎么转化的问题,等等。

每个孩子起步的早晚不同,难免有些内容是别人学过而我没学过的,一旦考到就非常吃亏。那么怎么去补呢,我想也没有必要专门做这个事情,在平时上课的时候,如果老师讲到了你不太会,没学过的地方,给你几个建议:

1.立即举手请老师详细讲解,我相信每一个负责任的老师都会帮你把问题解释清楚的,但你不问老师就很难发现你没懂。

2.课后请教老师,有的同学和家长总觉得下课时间很短,老师没时间帮我讲,其实情况确实如此,但有时候一个问题你想半天没搞懂,可能老师的一句话就会对你有启发,进而把问题弄明白。

3.回家后进一步思考,有很多同学总觉得这个题我不会,好了,那我就不用做了。我经常给我的学生说这样的话:一道题你想了30分钟突然灵机一动想出来了,难道前29分钟的思考就没用了么?事实上前面的29分钟反而是最有用的,因为我要解决这样一个问题的时候遇到了困难,通过思考我把以前学过的方法都用上了(复习以前学过的东西)但还是做不出来,这段时间绝对是有效学习时间因为在思考的'过程中你把你学过的相关内容都复习了一遍,最终无论通过自己还是请教别人把题目做出来后(学到了新的方法,或者巩固了旧知识)都是非常有益的。

时间目前已经非常宝贵,利用的好就能在接下来的各种比拼中取得先机。每天都想一下,今天我学到了些什么东西,我在哪个方面有所提高。只要你每天能找到一个进步的地方,我想你会就觉得数学越来越简单了.切记不要每天只是忙于上课,考试。一定要有消化知识的过程,否则很难取得好成绩,或者说即使突击成功,上了中学也会吃大亏。

出处

计算! 计算! 计算!

之所以写三遍,实在是因为它太重要了,大部分的题目都只需要一个得数,如果费了半天力气想出好办法却把数算错那真是太得不偿失了。我们可以做下面的两件事情:第一,把一些常见的数“背”下来,例如1-30的平方,2的1次方到2的10次方等等,考试的时候一旦用到直接写出正确得数会非常节省时间,因为平均一个题目2分钟,如果20个题目你每个题目省下15秒那么就是5分钟了,某些情况下,时间=分数,像2月5号的考试就有很多同学因为时间不够没做完题。第二,计算能力的训练,每天花10-15分钟做10道计算题,检验自己的正确率,好处有两个,一个是提高计算能力,二是提高在时间紧迫的情况下做题的抗压能力。这些基本能力都是会受用终身的,至少在高考之前如此:)

六年级奥数题答案题解析【第三篇】

分析:我们用方程求出他们共同完成的时间,然后运用总时间除以他们制作一个零件的时间,就是要分得的个数.列式解答即可.

:设他们共用x分钟完成这批任务.

甲完成的个数:

2700÷6=450(个);。

乙完成的个数:

2700÷5=540(个);。

丙完成的个数;。

2700÷=600(个);。

答:甲乙丙每人应该分配到450个零件540个零件,600个零件。

:本题先求出他们共同完成的时间,再运用总时间除以他们制作一个零件的时间,就是要分得的个数。

六年级奥数题答案题解析【第四篇】

答案与解析:单打每张球桌2人,双打每张球桌4人。

如果10桌全是单打,出场的.球员将只有20人。

但是现在有32人出场,多12人。

每拿一桌单打换成双打,参赛的球员多出2人。

要能多出12人,应该有6桌换成双打。

是:6桌双打,4桌单打。

这个单打双打问题,按照题型来看,属于传统的鸡兔同笼问题。上面所用的解法,也是鸡兔同笼问题的常规解法,先假定都是同一种,然后替换。

也可利用中国古代解答鸡兔同笼问题时的“折半”法,算法更简单。

每张球桌沿着中间的球网分成左右两半,只考虑左半边。

单打的球桌左半边站1个人,双打的球桌左半边站2个人。

10张球桌两边共站32个人,左半边共站16个人。

六年级奥数题答案题解析【第五篇】

答案与解析:

那么甲效率提高三分之一后,合作总效率为8+乙效率。

所以根据效率比等于时间的反比,6+乙效率:8+乙效率=5:6,得出乙效率为4。

原来总效率=6+4=10。

乙效率降低四分之一后,总效率为6+3=9。

所以同样根据效率比等于时间的反比可得:10:9=规定时间+75:规定时间。

解得规定时间为675分。

答:规定时间是11小时15分钟。

答案与解析:“第一次相遇点距b处60米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180米,第二次相遇是距a地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以a、b相距=180-10=170米。

答案与解析:

首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

答案与解析:

10%与30%的盐水重量之比为(30%-22%):(22%-10%)=2:3,因此需要30%的盐水20÷2×3=30克。

瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的a、b两种酒精,瓶子里的酒精浓度变为14%.已知a种酒精的'浓度是b种酒精的2倍,答案与解析:

依题意,a种酒精浓度是b种酒精的2倍.设b种酒精浓度为x%,则a种酒精浓度为2x%.a种酒精溶液10o克,因此100×2x%为100克酒精溶液中含纯酒精的克数.b种酒精溶液40o克,因此400×x%为400克酒精溶液中含纯酒精的克数.

解:设b种酒精浓度为x%,则a种酒精的浓度为2x%.求a种酒精的浓度.

答案与解析:

那么除掉起步的3千米的距离,之后增加的距离为:。

也就是说除起步价距离,增加的距离介于4个2米和5个2米之间。

所以就按照5个2千米来进行收费;。

应该支付的钱数为:8+3×5=23元。

奥数题七。

计算+()。

原式=+。

=13-(+)。

=2。

解:题中的条件,两个不同的骑车速度,行两地路程到达的时间分别是下午1时和上午11时,即后一速度用的时间比前一速度少2小时,为便于比较,可以以行到下午1时作为标准,算出用后一速度行到下午1时,从甲地到乙地可以比前一速度多行15×2=30(千米),这样,两组对应数量如下:

每小时行10千米下午1时正好从甲地到乙地。

每小时行15千米下午1时比从甲地到乙地多行30千米。

上下对比每小时多行15-10=5(千米),行同样时间多行30千米,从出发到下午1时,用的时间是30÷5=6(小时),甲地到乙地的路程是10×6=60(千米),行6小时,下午1时到达,出发的时间是上午7时,要在中午12时到,即行12-7=5(小时),每小时应行60÷5=12(千米)。

答:每小时应行12千米。

六年级奥数题答案题解析【第六篇】

张先生以标价的95%买下一套房子,经过一段时间后,又以超出原标价30%的价格把房子卖出.这样他一共获利万元.这套房子原标价万元.

分析:95%的单位“1”是这套房子原标价,“以超出原标价30%的价格把房子卖出,”30%的单位“1”是这套房子原标价,即以这套房子原标价的(1+30%)卖出,再根据一共获利万元,得出万元对应的'百分数为(1+30%)-95%,由此用除法列式求出这套房子原标价.

解答:解:÷(1+30%-95%),

=÷35%,

=30(万元),

答:这套房子原标价30万元;。

故答案为:30.

点评:关键是找准单位“1”,根据利润=卖出价-买入价,找出对应的百分数,列式解答即可.

六年级奥数题答案题解析【第七篇】

据研究表明,奥数只适合少数对数学有兴趣、有特长、有天分的学生,只有大约5%的智力超常儿童适合学习奥数。下面是六年级奥数题及答案,为大家提供参考。

六年级。

1.每个学生的基础分为奇数,无论题目的答题情况,每一题都将是总分加上或减去一个奇数,所以20题之后,总分相当于21个奇数做加减法,所以每个学生的总分肯定是奇数,而学生有2013名,奇数和奇数的和还是奇数,所以所有学生的分数一定是奇数。

2.正方体一个面的面积是144÷4=36平方厘米,根据长方体的表面积可得:

36×(4n+2)=3096。

144n+72=3096。

n=21。

答:n是21。

六年级奥数题答案题解析【第八篇】

答案与解析:

一位数1-9一共用了9个数字。

三位数中,先考虑100-199的情况。其中,111用了1个数字;100,122…199一共有9个数,每一个都用到了2个数字;101,121,131…191一共9个数,每一个都用到了2个数字;其他的每一个都用到了3个数字。所以一共用了3x(100-9-9-1)+2x9+2x9+1=280.

六年级奥数题答案题解析【第九篇】

原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的.%,那么第二次降价后的价格是原来定价的百分之几?(b级)。

要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。

解:设第二次降价是按x%的利润定价的。

38%×40%+x%×(1-40%)=%。

x%=25%。

(1+25%)÷(1+100%)=%。

答:第二次降价后的价格是原来价格的%。

六年级奥数题答案题解析【第十篇】

口诀:

和加上差,越加越大;。

除以2,便是大的;。

和减去差,越减越小;。

除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

已知整体求部分。

口诀:

家要众人合,分家有原则。

分母比数和,分子自己的。

和乘以比例,就是该得的。

例:甲乙丙三数和为27,甲;乙:丙=2:3:4,求甲乙丙三数。

分母比数和,即分母为:2+3+4=9;。

分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

口诀。

我的比你多,倍数是因果。

分子实际差,分母倍数差。

商是一倍的,

乘以各自的倍数,

两数便可求得。

例:甲数比乙数大12,甲:乙=7:4,求两数。

先求一倍的量,12/(7-4)=4,

所以甲数为:4x7=28,乙数为:4x4=16。

口诀:

假设全是鸡,假设全是兔。

多了几只脚,少了几只足?

除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36,有脚120,求鸡兔数。

(1)加水稀释。

口诀:

加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?

加水先求糖,原来含糖为:20x15%=3(千克)。

糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)。

(2)加糖浓化。

口诀:

加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?

加糖先求水,原来含水为:20x(1-15%)=17(千克)。

水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=(千克)。

(1)相遇问题。

口诀:

相遇那一刻,路程全走过。

除以速度和,就把时间得。

相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。

除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)。

(2)追及问题。

口诀:

慢鸟要先飞,快的随后追。

先走的路程,除以速度差,

时间就求对。

先走的路程,为3x2=6(千米)。

速度的差,为6-3=3(千米/小时)。

所以追上的时间为:6/3=2(小时)。

口诀:

全盈全亏,大的减去小的;。

一盈一亏,盈亏加在一起。

除以分配的.差,

结果就是分配的东西或者是人。

例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?

一盈一亏:则公式为:(9+7)/(10-8)=8(人),相应桃子为8x10-9=71(个)。

例3:学生发书。每人10本则差90本;每人8本则差8本,多少学生多少书?

口诀:

每牛每天的吃草量假设是份数1,

a头b天的吃草量算出是几?

m头n天的吃草量又是几?

大的减去小的,除以二者对应的天数的差值,

结果就是草的生长速率。

原有的草量依此反推。

公式就是a头b天的吃草量减去b天乘以草的生长速率。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;。

有的草量除以剩余的牛数就将需要的天数求知。

结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);。

原有的草量依此反推。

公式就是a头b天的吃草量减去b天乘以草的生长速率。

所以原有的草量=27x6-6x15=72(牛/天)。

将未知吃草量的牛分为两个部分:

一小部分先吃新草,个数就是草的比率;。

这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;。

所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)。

口诀:

岁差不会变,同时相加减,

岁数一改变,倍数也改变。

抓住这三点,一切都简单。

例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?

岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。

已知差及倍数,转化为差比问题。

26/(3-1)=13,几年后爸爸的年龄是13x3=39岁,小军的年龄是13x1=13岁,所以应该是5年后。

岁差不会变,今年的岁数差13-9=4几年后也不会改变。

几年后岁数和是40,岁数差是4,转化为和差问题。

48 2705449
");