“最大公因数”教学设计【通用4篇】
【阅读指引】阿拉文库网友为您分享整理的““最大公因数”教学设计【通用4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
《最大公因数》教学设计【第一篇】
教学内容:
人教版五年级第十册66-69页最大公因数。
教学目标:
1、理解公因数,最大公因数和互质数的概念。
2、初步掌握求最大公因数的一般方法。
3、培养学生思维的有序性和条理性。
4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。
教学重,难点:
1、理解公因数,最大公因数,互质数的概念。
2、求最大公因数的一般方法。
教具准备:
多媒体教学课件。
教学过程:
一,师生共研,学习新知:
我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?
出示课件:
16的因数有:1、2、4、8、16
12的因数:1、2、3、4、6、12
那么既是16又是12的因数是:1、2、4
16和12的公有因数中最大的一个是:4
出示课件:
16的因数:1、2、4、8、16
12的因数:1、2、3、4、6、12
8的因数:1、2、4、8
师:我们就把1、2、4叫做16、12和8的什么呢?
生:公因数
师:4就是16、12和8的什么呢?
生:最大公因数。
师:请同学用自己的话说一说公因数是什么意思?
生:几个数公有的因数,就叫公因数。
生:就是几个数都有的因数,就叫公因数。
师:同学谁能说一下什么又是最大公因数呢?
生:几个数公因数里面最大的一个,就叫最大公因数。
师生共同总结概念:
公因数:几个数公有的因数,叫做这几个数的公因数。
最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数
二、巩固练习,加深理解:
出示课件:
同学们能不能找出15和18的公因数,再找出它们的最大公因呢?
15的因数18的因数15的因数18的因数
不清
15和18的公因数
三、合作探究,认识互质数
1、5和7的公因数和最大公因数各是多少?
5的因数:1、的因数:1、7.
5和7的公因数有:和7的最大公因数是:1.
2、7和9呢?
7的因数:1,的因数:1,3,9.
7和9的公因数有:和9的最大公因数是:1
指名回答:并让学生说出自己的看法和理由。
师总结:公因数只有1的两个数,叫做互质数。
同学们认识了公因数和最大公因数?同学们想不想去求两个数的最大公因数呢?
四、深化练习、掌握方法:
那么大家想一想18和30的最大公因数怎么去求呢?
小组讨论方法:小组代表发言汇报讨论结果。
师引导出用分解质因数的方法,
18=2×3×330=2×3×5
归纳出:18和30的公有的质因数是2和3,
那么最大公因数就是2×3=6
能不能用更简便的方法呢?
把两个短除法合并成一个短除法
21830→用公有的质因数2除
3915→用公有的质因数3除
35→除到两个商是互质数为止
把所有的除数乘起来,得到18和30的最大公因数是
2×3=6
学生总结短除法求最大公因数的方法。
求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
鼓励学生用不同的方法去完成练习。
求12和20的最大公因数
学生动手练习,师巡视指导,学生上黑板演示过程。
五、小小能手、我来闯关:
第一关:填一填
的因数有(),20的因数有()它们的公因数有(),最大公因数是()。
和9的公因数有(),最大公因数是()
第二关:判一判
1、公因数有1的两个数是互质数()。
的因数只有2、3、4、6、12。()
3、成为互质数的两个数一定都是质数。()
第三关:做一做
木材市场运来一批长12米,16米和20米的木材,把这三种长度的木材截成同样长,最长可以截成每根是多少米?
六、全课小节、畅谈收获:
学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。
七、板书设计:
最大公因数
公因数:几个数公有的因数。
最大公因数:公因数里最大的一个。
互质数:公因数只有1的两个数。
把18和30分别分解质因数
218230
39315
35
18=2×3×3
30=2×3×5
18和30的公有质因数是2和3,因此:
18和30的最大公因数是2×3=6
合并两个短除法
21830→用公有的质因数2除
3915→用公有的质因数3除
35→除到两个商是互质数为止
把所有的除数乘起来,得出18和30的最大公因数是2×3=6
教学反思
教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。
1、借助操作活动,经历概念的形成过程。
本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。
2、预设探究过程,增强学生主体意识。
为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。
3、提倡思考方法的多样化。
在教学中,我把重点放在找两个数的公因数的方法上,鼓励学生找最大公因数方法的多样化。学生可能想到三种方法,通过讨论,引导学生对方法进行优化,我认为用短除法求最大公因数是一个很有效、很简便的方法,应该让学生掌握。在这中间教师应注意引导、小结、鼓励,重视方法和策略的渗透,以提高学生的学习能力
《最大公因数》小学数学优秀教学设计【第二篇】
教学内容
《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。
设计思路
这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。
教学目标
1、使学生理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
4、培养学生抽象、概括的能力。
重点难点
1、理解公因数和最大公因数的意义。
2、掌握求两个数的最大公因数的方法。
教具准备
多媒体课件、卡片
教学过程
一、导入
1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?
2、分别写出16和12的所有因数。
二、教学实施
1、老师用多媒体课件演示集合图。
指出:1,2,4是16和12公有的因数,叫做他们的公因数。
其中,4是最大的公因数,叫做他们的最大公因数。
2、完成教材第80页的“做一做”
先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。
3、出示例2。怎样求18和27的最大公因数?
(1)学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。
(2)小组讨论,互相启发,再在全班交流。
(3)老师用多媒体课件和板书演示方法
方法一:先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。
18的因数有:① ,2 ,③ ,6 ,⑨ ,18
方法三:先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。
27的因数有:①,③,⑨,27
方法四:先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数,第一个数9是27的因数,所以9是18和27的最大公因数。
4、完成教材第81页的“做一做”。
学生先独立完成,独立观察,每组数有什么特点,再进行交流。
小结:求两个数最大公因数有哪些特殊情况?
⑴当两个数成倍数关系时,较小的数就是他们的最大公因数。
⑵当两个数只有公因数1时,他们的最大公因数是1。
三、课堂练习设计(多媒体课件出示)
选出正确答案的编号填在括号里
1、9和16的最大公因数是( )
A 。 1 B. 3 C 。 4 D. 9
2、16和48的最大公因数是()
A 。 4 B. 6 C 。 8 D. 16
3、甲数是乙数的倍数,甲乙两数的最大公因数是( )
A 。1 B. 甲数C 。 乙数D. 甲、乙两数的积
四、课堂小结
通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。
五、留下疑问
有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?
六、课堂作业设计
教材82页第2题、第5题
板书设计
最大公因数
例2:怎样求18和27的最大公因数?
18的因数有:1 ,2 ,3 ,6 ,9 ,18
27的因数有:1 ,3 , 9 ,27
18和27的公因数有:1 ,3 , 9
18和27的最大公因数是9
《最大公因数》小学数学优秀教学设计【第三篇】
一、教学目标:
1、理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生抽象、概括的能力。
二、教学重难点:
理解公因数和最大公因数的意义。
三、教具准备:
多媒体课件,方格纸(每人一张)。
四、教学过程:
(一)复习导入
1.复习。
教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。
教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。
2.导入。
师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的因数呢?今天我们就通过游戏来学习公因数和最大公因数。
(二)创设情境,引出问题
今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。
学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。
师:你们3个为什么没有找到伙伴?
生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。
生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。
生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。
师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。
设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。
(三)求两个数的最大公因数
1.明确方法,提出要求。
师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?
课件出示教材60页例2:怎样求18和27的最大公因数?
2.学生试做后,组内交流。
3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?
(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)
4.反馈练习。
教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。
师:做完这道题,大家发现了什么?
(学生讨论后汇报)
(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。
公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。
(五)谈谈这节课你有什么收获?
《最大公因数》教学设计【第四篇】
教学内容:
人教版小学数学五年级下册第60~62页
教学目标:
1、结合具体的生活情景,通过确定取值范围、动手操作验证、小组合作、交流,经历公因数和最大公因数的产生,并理解其意义。
2、渗透集合思想,体验解决问题策略的多样化。
3、培养学生的抽象能力和解决问题能力,并且会求100以内两个数的最大公因数,感知公因数和最大公约数在生活中的广泛应用。
4、以去“游乐园”游玩为契机激发学生学习数学的兴趣。
教学重点、难点:
理解公因数与最大公因数的定义;
探索寻找两个数的最大公因数的方法。
教学准备:
多媒体课件 ;小奖品;小组学案各一份;方格纸每组5张、彩笔;每个人制作学号卡佩戴好。
教学过程:
一、复习铺垫---抢夺气球
1、情境引入
(1)、出示“数学游乐园”
师:想去“数学游乐园”玩吗?(想)乐园里不仅有许多好玩的,表现好的还可以获得很多的奖励哦!
(2)、看现在乐园里正在举行“抢夺气球”的活动呢!谁想来抢呢?(回答课件中的问题,答对一个获得一个奖励)
3的因数有:6的因数有:
8的因数有:12的因数有:
二、讲解新授
1、游乐园的储存室长16dm,宽12dm。如果要用边长是整分米的正方形地砖把储存室的地面铺满(使用的地砖都是整块)。可以选择边长是几分米的地砖?边长最大是几分米?
你知道铺地砖的要求是什么吗?(交流 “正方形地砖” “都是整块的” “边长还要是整分米数” 什么是整分米数?)
2、合作探究
(1)阅读并讨论
用长方形方格纸代表长16分米、宽12分米的储藏室地面,每个方格可以代表边长是1分米的正方形。小组讨论下,边长可以是几分米呢?(学生操作)
(2)合作与交流
A、交流边长是“4” 为什么?
问:你们觉得行吗?
答:铺满
B、交流边长是“2” 出示一个角
问:你觉得长边、短边可以分别铺几块呢?
答:铺满
C、交流边长是“1” 铺一个角
问:你觉得长边、短边可以分别铺几块?
答:铺满
认识公因数和最大公因数
(1)讨论交流
还有没有别的铺法?边长是3分米的地砖行吗?为什么?边长是5分米呢?
宽边虽然可以铺整数块,但长边不行,会多出来。16÷5,12÷5都有余数,得到的不是整数,而题目要求是整块的
(2)抽象公因数概念
我们发现边长1、2、4分米的地砖能铺满,而且是整数块,其它的都不行。那“1、2、4”与16和12到底有着什么特殊关系呢?
(1、2、4不仅是16的因数又是12的因数。1、2、4是12和16的公因数)
同意吗?
那我们就用以前的方法找找16、12的因数。
16的因数有:1、2、4、8、16 12的因数有:1、2、3、4、6、12
你发现什么?
我发现1、2、4既是12的因数又是16的因数。
能不能简单的说说,它们是12和6的什么数吗?
1、2、4是12和16公有的因数,1、2、4是12和16的公因数
板书“公因数”
说能说一说什么是公因数
几个数共有的因数,就是这几个数的公因数
那16和12的公因数有:1、2、4
(3)用集合圈表示
我们可以用集合圈来表示两个数的公因数
现在中间的表示什么呢?应该填?
那这圈里的(指左边、右边)填?表示?
(4)认识最大公因数
边长最大是几分米? 你是怎么想的?
(从公因数中找最大的。边长大的话占地面积就要大,铺的块数就要少)
实际上这4就是16和12的最大公因数,板书“最大公因数”
16和12的最大公因数是4
2、合作交流、探索方法
怎样求18和 27 的最大公因数。(看哪组的方法多)
小组谈论,实践交流。 交流反馈、小结方法。
这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。
3、找一找,填一填
8的因数: 16的因数:
8和16 的公因数: 8和16 的最大公因数:
想一想:8和16之间有什么关系?与它们的最大公因数有什么关系?
小结:如果较大数是较小数的倍数,那么较小数就是它们的最大公因数。
找一找,填一填
5的因数: 7的因数:
想一想:5和7的公因数有哪些?
小结:像这样的两个数:公因数只有 1 的两个数,叫做互质数 。
互为质数的两个数的最大公因数是1.
三、巩固练习
1、游戏:看谁站的对。
座位号是 12 的因数而不是 18 的因数的同学站左边、是 18 的因数而不是 12 的因数的站右边、是 12 和 18 公因数的站中间。
四、全课总结:学生畅谈本节课的收获。
上一篇:数学五年级下册教案精编3篇