圆锥的体积教学设计通用4篇

网友 分享 时间:

【阅读指引】阿拉文库网友为您分享整理的“圆锥的体积教学设计通用4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

圆锥的体积教学设计【第一篇】

教学内容:人教版九年义务教育小学数学教科书第十二册。

整体感知:这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。

教学目的:

1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。

2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。

3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。

[点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜想——————验证”、“合作——————探究”等学习方式的培养及“转化”数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。

教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。

教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题。

教学过程:

一、 创设情境导入新课。

1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?

2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)

3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。

[点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅巩固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想办法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正体现了学生的主体地位。最后让学生从具体的问题中体会到自己方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。]

二、经历体验,探究新知

(一)渗透转化,帮助猜想

1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。

2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的`底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。

3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜想他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜想……

[点评:本环节教师先引导学生回忆圆柱体积的推导过程,向学生渗透“转化”的思想。使学生感受到新知也可通过“转化”的方法变成已学过的知识来解决。然后留给学生充分的时间亲自动手去削铅笔,感受到圆锥是怎样转化成圆柱的。通过观察比较、讨论交流一步一步得出圆锥的体积和它等底等高的圆柱有关。同时运用学生已有的知识和经验让学生进行猜想它们之间有怎样的关系,发展了学生的想象空间,培养了学生的创新思维。]

(二)小组合作,实验验证。

1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。

2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。

3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:

概括板书:

等底到高

V圆柱=Sh V圆锥= 1/3sh

4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:

V =1/3πr2h V =1/3(c/2π)2h V =1/3(d/2)2h

5、教师组织学生独立完成书中例题后集体订正。

[点评:俗话说:“实践是检验真理的唯一标准。”学生在前面猜想的基础上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜想在这里得到了验证。这一过程的设计潜移默化地向学生渗透了“猜想——————验证”这一完整的学习数学的方法。从而也培养了学生合作的意识、发展了学生的思维、培养了学生的创新意识和实践能力。最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。这个过程,让学生充分经历了知识的形成过程,体现了“动态生成”,为抽象的理论提供了感性材料。]

(三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。

[点评:伟大的科学家爱因斯坦曾说过:“提出一个问题比解决一个问题更重要。”学生经历了问题的探索过程后,再将他们引加到书本上。这时学生的可能提的更有价值、有深度。]

三、巩固新知,拓展应用。

1、判断并说明理由

(1)圆柱体积是圆锥体积的3倍( )

(2)一个圆锥的高不变,底面积越大,体积越大。( )

(3)一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。( )

组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。

2、求下列圆锥的体积(口答,只列式,不计算)

s=4平方米,h=2平方米

r=2分米,h=3分米

d=6厘米,h=5厘米

组织学生根据圆锥体积公式解答。

3、实践与应用:

学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?

组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。

[点评:练习设计由浅入深,由例题到实践应用,层次鲜明,并注重培养学生解决实际问题的能力,达到学以致用的目的]

四、课后总结,感情升华。

这节课你有什么收获?你是怎样获得的?

[不仅关注学生知识技能的掌握,更注重数学方法的提炼及学生的情感、态度、学习数学的信心等,促进了学生的可持续发展。]

[总评:

1、钻研教材,创造性地使用教材。

教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。

2、注重数学思想方法的渗透。

数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。

3、猜想—————验证、合作交流等学习方式体现了学生的主体地位。

本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜想圆锥的体积可能会与谁有关,再进一步猜想又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜想是否正确,从而得出结论。整个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正体现了人人学有价值的数学,不同的人在数学上得到不同的发展

圆锥的体积教学设计【第二篇】

教学目的与要求:

(1)掌握锥体的等积定值,锥体的体积公式。

(2) 理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。

教学重点与难点:

公式的推导过程,即"割补法"求体积。

教学方法:

发现式教学 教具:

三棱柱模型、多媒体

1、复习祖暅 原理及柱体的体积公式。

2、等底面积等高的任意两个锥体的体积。

(类比于柱体体积公式的得出)。首先研究等底面积等高的任意两个锥体体积之间的'关系。

取任意两个锥体,设它们的底面积都是S,高都是h。

(创造祖暅 原理的条件)把这两个锥体放在同一个平面α上。这时它们的顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:

∵S1/S=h12/h2,,S2/S=h12/h2,

∴S1/S=S2/S,S1=S2。

根据祖日恒 原理,这两个锥体的体积相等,由此得到下面的定理:

定理,等底面积等高的两个锥体的体积相等。

3、三棱锥的体积公式

为研究三棱锥的体积,可类比于初中三角形面积的求法。

在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)

而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。

能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?

[可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。

也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?

(图形没有打印)

[引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。

三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。三棱锥2、3的底ΔB'CB'、ΔC'B'C的面积相等,高也相等。(顶点都是A')。

∴V1=V2=V3=1/3V三棱柱 ∵V棱柱=Sh ∴V三棱柱=1/3Sh

最后,因为和一个三棱锥等底面积等高的任何锥体都和这个三棱锥的体积相等,所以得到下面的定理。

定理:如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:V锥体=1/3Sh。

推论:如果圆锥的底面半径是r,高是h,那么它的体积是: V圆锥=1/3πr2h

4、锥体体积公式的应用。

练习1:正四棱锥底面积是S,侧面积为Q,则其体积为: 。

练习2:圆锥的全面积为14πcm2,侧面展开图的中心角为60°,则其体积为 。

练习3:边长为a的正方形,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这个扇形围成一个圆锥筒,求它的体积。

5、课堂小结:1°割补法求三棱锥的思想。

2°锥体的体积公式。

圆锥的体积教学设计【第三篇】

教学过程

一、复习

1、圆柱的体积公式是什么?用字母怎样表示?

2、求下列各圆柱的体积。(口答)

(1)底面积是5平方厘米,高是6厘米。

(2)底面半径4分米,高是10分米。

(3)底面直径2米,高是3米。

师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

生:圆锥的底面是圆形的。

生:从圆锥的顶点到底面圆心的距离是圆锥的高。

师:你能上来指出这个圆锥的高吗?

师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

师:你们看到过哪些物体是圆锥形状的?(略)

师:对。在生活中有很多圆锥形的物体。

师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

出示小黑板:

1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?

2、圆锥的体积怎么算?体积公式是怎样的?

学生分组做实验,老师巡回指导。

师:我们先来回答第一个问题。在你们做实验用的圆锥的`体积和同它等底等高的圆柱的体积有什么关系?

生:圆柱的体积是圆锥体积的3倍。

生:圆锥的体积是同它等底等高的圆柱体权的1/3。

板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

师:说得很好。那么圆锥的体积怎么算呢?

生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

师:谁能说说圆锥的体积公式。

生:圆锥的体积公式是v=1/3sh。

师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

(两名学生板演,老师巡视)

师:这位同学做的对不对?

生:对!

师:和他做的一-样的同学请举手。(绝大多数同学举手)

师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

三、巩固练习

(1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?

(2)、求圆锥的体积(看图)

(3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

2、填空。

(1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。

3、选择

(1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。

(2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。

四、课堂总结

师:今天,我们学习了什么内容?怎样计算圆锥的体积?

对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

五、布置作业

课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

教学目的

1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

教学重点

圆锥的体积计算。

教学难点

圆锥的体积公式推导。

教学关键

圆锥的体积是与它等底等高的圆柱体积的三分之一。

教具准备

多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。

学具准备

空心圆锥和圆柱实物各一个,沙土若干。

圆锥的体积教学设计【第四篇】

教学内容:

九年义务教育六年制小学数学第十二册第48-50页。

教学目的:

1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。

3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

教学重点:

圆锥的体积计算。

教学难点:

圆锥的体积公式推导。

教学关键:

圆锥的体积是与它等底等高的圆柱体积的二分之一。

教具准备:

投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。

学具准备:

等底等高的圆柱和圆锥空心实物各一个

教学过程:

一、复习

1.圆柱的体积公式是什么?

2.底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?

[说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]

师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

板书:圆锥的体积

[说明:设疑激趣,激发学生探求新知识的欲望。l

二、新课教学

师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)

投影出示下图:

师:圆锥的底面是什么形状?

生:圆锥的底面是圆形的。

师:对。什么是圆锥的高呢?

生:从圆锥的顶点到底面圆心的距离是圆锥的高。

师:你能上来指出这个圆锥的高吗?

师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

师演示:将刚才出示的圆锥图上的高往外移,标上字母h,如图所示:

师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?

生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。

师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)

师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)

师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?

投影出示下列图形:

生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。

师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?

生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。

师:说得有道理。你能不能将这个圆锥摆正。

(一名学生到前面旋转投影片,将圆锥图形一一摆正)

师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。

[说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生加深认识;最后,用一组判断题要学生鉴别哪些是圆锥,哪些不是圆锥,符合学生的认知规律,从而达到知识的。强化目的。]

师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)

生:它们的底面是相等的。

师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)

生:它们的高也是相等的。

师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

出示小黑板:

1.实验器材中,圆锥的底面和圆柱的底面有什么关系?官们的高有什么关系?

2.圆锥的体积和同它等底等高的圆柱的体积有什么关系?

3.圆锥的体积怎么算?体职公式是怎样的?

学生分组做实验,老师巡回指导。

师:我们先来回答第一个问题。在你们做实验用的

器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?

生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。

师:我们再来讨论第2个问题。圆锥的体积和同它等底等高的圆柱的体积有什么关系?

生:圆柱的体积是圆锥体积的3倍。

生:圆锥的体积是同它等底等高的圆柱体权的1/3。

板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

师:说得很好。那么圆锥的体积怎么算呢?

生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

师:谁能说说圆锥的体积公式。

生:圆锥的体积公式是V=1/3Sh。

师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。

生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。

(请两名学生上讲台示范实验)

师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。

生齐答:不是。

[说明:变教具为学具,让学生亲自动手实验,使听党、视觉、触觉等各种感官一起参与活动,通过自己亲自动手操作,努力去探索圆锥体积的计算方法,这样的学习,学得活,记得牢,既发挥了教师的主导作用,又充分体现了学生的主体地位。]

师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。

求与下面圆柱等底等高的圆锥体的体积。

1.圆柱体的体积是3立方厘米;

2.圆柱体的体积是立方分米;

3.圆柱体的体积是1/2立方米;"

生答略。

师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。

例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

(两名学生板演,老师巡视)

师:这位同学做的对不对?

生:对!

师:和他做的一-样的同学请举手。(绝大多数同学举手)

师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3Sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

三、巩固练习

师:现在我们一起来做填表练习。

出示小黑板:

1. 填表:

底面积S (平方米) 高h(米) 圆锥的体积(立方米)

15 9 ()

16 ()

师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

2.求下面各圆锥的体积。

(1)半径是3米,高是2米。

(2)直径是4分米,高是6分米。

(3)周长是6,28厘米,高是3厘米。

3.有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

[说明:练习有层次,形式多样。最后一个层次的练习,又回到动手实验上,而且强化的仍然是本节课最基本、最关键的内容。]

师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用V=1/3Sh这个公式算圆锥体积时,要特别注意什么。

22 17459
");