九年级数学公开课《一元二次方程》教学设计【优秀4篇】

网友 分享 时间:

【序言】由阿拉题库最美丽的网友为您整理分享的“九年级数学公开课《一元二次方程》教学设计【优秀4篇】”作文资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

数学《一元二次方程》教案设计【第一篇】

教学目的

1、了解整式方程和一元二次方程的概念;

2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:

重点:

1、一元二次方程的有关概念

2、会把一元二次方程化成一般形式

难点:一元二次方程的含义。

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:1.要解决这个问题,就要求出铁片的长和宽。

2、这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3、让学生自己列出方程( x(x十5)=150 )

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1、从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2、什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的次数是几。如果方程未知数的次数是2、这样的整式方程叫做一元二次方程。(板书一元二次方程的定义)

3、强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:(2)x2=4

(2)(x十3)(3x·4)=(x十2)2; (4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的次数是否是2。

4、一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0 (a≠0)

1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2)。讲解方程中ax2、bx、c各项的名称及a、b的系数名称。

3)。强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本P6)

1、说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。

元二次方程教案【第二篇】

学习目标

1.进一步理解方程是刻画客观世界的有效模型,

2.通过对实际问题的决实际问题的过程,知道解的一般步骤和关键所在

学习重点:认识不等式

学习难点:字语言转化为数学不等式

教学过程

一、情境引入:

围绕长方形公园的栅栏长280m.已知该公园的面积为4800m2. 求这个公园的长与宽。

二、探究学习:

1.尝试:

通常用一元一次方程解决实际问题要经历怎样的过程?

2.概括总结.

用方程解决实际问题的一般步骤为:找相等关系;设未知数,列方程,解方程,检验,答题。

3.典型例题:

例1、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元,如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于今为500元。

甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?

例2、建造一个池底为正方形、深度为2米的长方体无盖水池,池壁的造价为100元/平方米

池底的造价为200元/平方米,总造价为6400元,求正方形池底的长。

例3、两个连续奇数的积是323,求这两个数。

4.巩固练习:

(1)在三位数345中,3,4,5是这个三位数的什么?

(2)如果a ,b ,c 分别表示百位数字、十位数字、个位数字,这个三位数能不能写成abc形式?为什么?

(3)有一个两位数,它的两个数字之和是8,把这个两位数的数字交换位置后所得的数乘以原的数就得到1855,求原的两位数。

(4)已知两个数的和等于12,积等于32,则这两个是

(5)求 x:(x-1)=(x+2):3 中的x.

(6)三个连续整数两两相乘后,再求和,得362,求这三个数。

三、归纳总结:

1、列一元二次方程解决实际问题的一般步骤。

2、解的取舍情况。

用一元二次方程解决问题( 1)

课后作业

班级 姓名 学号

1、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,则这个百分数为 ( )

A、10% B、20% C、120% D、180%

2、若两个连续整数的积是56,则它们的和是 ( )

A、±15 B、15 C、-15 D、11

3、一种药品经过两次降价后,每盒的价格由原的60元降至元,那么平均每次降价的百分率是 。

4、某地区开展“科技下乡”活动三年,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是___________。

5、西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0、1元/kg,每天可多售出40kg,另外,每天的房租等固定成本共24元,该经营户要想每天盈利润200元,应将每千克小型西瓜的售价降低多少元?

6、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。

(1)如果要围成面积为45平方米的花圃,AB的长是多少米?

(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。

元二次方程【第三篇】

教学目标

1. 理解直接开平方法与平方根运算的联系,学会用直接开平方法解特殊的一元二次方程;培养基本的运算能力;

2.知道形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。培养观察、比较、分析、综合等能力,会应用学过的知识去解决新的问题;

3. 鼓励学生积极主动的参与“教”与“学”的整个过程,体会解方程过程中所蕴涵的化归思想、整体思想和降次策略。

教学重点及难点

1、 用直接开平方法解一元二次方程;

2、理解直接开平方法中的整体思想,懂得(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解

教学过程设计

一、情景引入,理解方法

看一看:特殊奥林匹克运动会的会标

想一想:

在XX年的特殊奥林匹克运动会的筹备过程中制玩具节举办的更加隆重,xx学校将在运动场搭建一个舞台,其中一个方案是:在运动场正中间搭建一个面积为144平方米的正方形舞台,那么请问这个舞台的各边边长将会是多少米呢?

解:由题意得: x2=144

根据平方根的意义得:x=± 12

∴原方程的解是:x1=12 , x2=-12

∵边长不能为负数

∴x=12

了解方法:

上述解方程的方法叫做直接开平方法。通过直接将某一个数开平方,解一元二次方程的方法叫做直接开平方法。

说明用开平方法解形如ax2+c=0(a≠0)的方程有三种可能性,学生归纳是难点,教师要在学生具体感知的基础上进行具体概括。通过两个阶段联系后的探究意在培养学生探究一般规律的能力。

第三阶段:怎样解方程(1+x)2=144?

请四人学习小组共同研究,并给出一个解题过程。可以参考课本或其他资料。小组长负责清楚的记录解题过程。

第四阶段:众人齐心当考官!

请各四人小组试着编一个类似于(x+1)2=144 这样能用直接开平方法解的一元二次方程。

1、分析学生所编的方程。

2、从学生的编题中挑出一个方程给学生练习。

3、出示:思考:下列方程又该如何应用直接开平方法求解呢?

4(x+1)2-144=0

归纳:形如(px+q)2=m(p≠0,m≥0)的一元二次方程都可以用直接开平方法解。

说明在第三、四阶段的讲解和练习中教师需让学生体会到其中蕴涵了整体思想。

三、巩固方法,提高能力

请大家帮帮忙,挑一挑,拣一拣,下列一元二次方程中,哪些更适宜用直接开平方法来解呢?

⑴  x2=3              ⑵  3t2-t=0

⑶  3y2=27            ⑷  (y-1)2-4=0

⑸  (2x+3)2=6         ⑹  x2=36x

四、自主小结

今天我们学会了什么方法解一元二次方程?适合用开平方法解的一元二次方程有什么特点?

《一元二次方程》的优秀教案【第四篇】

学习目标:

1、使学生会用列一元二次方程的方法解决有关增长率的应用题;

2、进一步培养学生分析问题、解决问题的能力。

学习重点:

会列一元二次方程解关于增长率问题的应用题。

学习难点:

如何分析题意,找出等量关系,列方程。

学习过程:

一、 复习提问:

列一元二次方程解应用题的一般步骤是什么?

二、探索新知

1、情境导入

问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范。2002年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,2003年村长完成了亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长2003年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?

2、合作探究、师生互动

教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即2002年实际完成的亩数是30(1+x),第二次增长后,即2003年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是亩。

教师引导学生运用方程解决问题:

①30(1+x)2=;(1+x)2=;1+x=±;x1==10%,x2=-(舍去),所以增长的百分率为10%。

②全村坡耕地还林还草为50×=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=(万斤)。

三、例题学习

说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?

(小组合作交流教师点拨)

时间 基数 降价 降价后价钱

第一次 600 600x 600(1-x)

第二次 600(1-x) 600(1-x)x 600(1-x)2

(由学生写出解答过程)

四、巩固练习

一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到%)?

五、课堂总结:

1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。

2、注意解方程中的巧算和方程两个根的取舍问题。

六、反馈练习:

1、某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为( )

+(1+x)x=20% B.(1+x)2=20%

C.(1+x)2= D.(1+x%)2=1+20%

2、某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是( )

3、某种药剂原售价为4元,经过两次降价,现在每瓶售价为元,问平均每次降低百分之几?

22 96351
");