多项式教学设计【参考10篇】
通过多样化的教学活动,激发学生对多项式的兴趣,提升理解与应用能力,能否有效促进他们的数学思维发展?以下是网友为大家整理分享的“多项式教学设计”相关范文,供您参考学习!
多项式教学设计 篇1
知识结构
重点、难点分析
重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,结果仍是多项式,其项数与原多项式的项数相同。因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。
难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。
教法建议
(1)多项式除以单项式运算的实质是把多项式除以单项式的运算转化为单项式的除法运算,因此建议在学习本课知识之前对单项式的除法运算进行复习巩固。
(2)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏项。
(3)要熟练地进行多项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行多项式除以单项式的.运算。
(4)符号仍是运算中的重要问题,用多项式的每一项除以单项式时,要注意每一项的符号和单项式的符号。
教学设计示例
教学目标 :
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
重点、难点:
1.多项式除以单项式的法则及其应用.
2.理解法则导出的根据。
课时安排:
一课时.
教具学具:
投影仪、胶片.
教学过程 :
1.复习导入
(l)用式子表示乘法分配律.
(2)单项式除以单项式法则是什么?
(3)计算:
①
②
③
(4)填空:
规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2.讲授新课
例1 计算:
(1) (2)
解:(1)原式
(2)原式
注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.
(2)要求学生说出式子每步变形的依据.
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.
例2 化简:
解:原式
说明:注意弄清题中运算顺序,正确运用有关法则、公式。
练习:(1)P150 1,2,。
(2)错例辩析:
有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为 。
3.小结
1.多项式除以单项式的法则是什么?
2.运用该法则应注意什么?
正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业
P152 A组1,2。
B组1,2。
多项式教学设计 篇2
一、教材分析
1、教材的地位
本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。
2、课标要求:能进行简单的整式乘法的运算。
3、教学目标
(1)、通过实际问题的探索,类比得出单项式乘以单项式的法则,发展逻辑思维能力。
(2)、通过单项式乘单项式的训练,加强法则的应用,提升运算能力。
(3)、通过运算法则在实际问题中的应用,提高解决实际问题的能力。
4、教学重点、难点:
重点:单项式乘单项式法则
(这是因为要熟练地进行单项式的乘法运算,就必须掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)
难点:
1、掌握单项式乘法法则的应用
2、单项式乘法法则有关系数和指数在计算中的不同规定
(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)
二、教学方法与手段
本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。
1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生既掌握了新的知识,又培养了学生探索问题的能力。
2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对学生良好学习习惯的培养。
3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。
4、本节课训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。
三、教学过程
1、温故知新(复习幂的运算性质)
单项式与单项式、单项式与多项式相乘最终将转化为有理数乘法,同底数幂相乘,幂的乘方,积的乘方等运算,故通过复习幂的运算性质为单项式乘单项式、单项式乘多项式的教学作好铺垫。
2、单项式乘法法则的推导
通过实际问题引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。通过类比实际问题的解决引导学生进行归纳,最后得出单项式乘以单项式的法则,以实现教学目标。
2、应用新知
例1引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例2是单项式的乘法在实际生活中的应用,通过例2使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。
在例题的教学过程中除学生给出计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习。
在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和自主练习,发现问题及时纠正,以实现教学目标2、3。
四、教学反思
1、设计分段练习。主要解决重点问题,及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。
2、采用不同的练习方法。如口答、笔答、板演等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈,做到对教学情况心中有数。
3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。
4、课堂气氛不够活跃。
5、锤炼语言的准确性。
多项式教学设计 篇3
【学习重点】
多项式乘以多项式法则的形成过程以及理解和应用
【学习难点】
多项式乘以多项式法则正确使用
【学习过程】
(一)激情导入:
回顾旧知识。
1.教师引导学生复习单项式乘以多项式运算法则.并通过练习加以巩固:
(1)(- 2a)(2a 22ab) 问题:某公园,有一块原长a米、宽p米的长方形草地增长了b米,加宽了q米。请你表示这块草地现在的面积。
问题:
(1)如何表示扩大后的草地的面积?
(2)用不同的方法表示出来后的等式为什么是相等的呢?
(学生分组讨论,相互交流得出答案。)
学生得到了两种不同的表示方法,一个是(a+b)(p+q)平方米;另一个是 (ap+bp+aq+bq)米平方,以上的两个结果都是正确的。
问:你从计算中发现了什么?
由于(a+b)(p+q)和(ap+bp+aq+bq)表示同一个量, 故有(a+b)(p+q)=(ap+bp+aq+bq)
问:你会计算这个式子吗?你是怎样计算的?
学生讨论得:由繁化简,把a+b看作一个整体,使之转化为单项式乘以多项式,即可得出结论。
【设计意图】
这里重要的是学生能理解运算法则及其探索过程,体会分配律可以将多项式与多项式相乘转化为单项多与多项式相乘。渗透整体思想和转化思想。
(二)自主探究
引导:观察这一结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?如果能得到,又是怎样相乘得到的?(教师示范。)
问:你能用语言叙述这个式子吗? 多项式乘以多项式的法则:
多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
即:(m+n)(a+b)=ma+mb+na+nb。
【设计意图】
引导学生发现多项式乘多项式的法则,培养学生分析问题、归纳问题的能力。通过对同一面积的不同表示方式,使学生对多项式乘多项式的有一个直观的认识,给出了多项式相乘的一个几何解释。
(三)典例分析
例1:计算:
(1)(x+2)(x+3)
(1)(2x-5y)(3x-y)
多项式教学设计 篇4
【教学目标】
1、经历探索多项式乘法法则的过程,理解多项式乘法法则。
2、学会用多项式乘法法则进行计算。
3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。
【教学重点、难点】
重点是掌握多项式的乘法法则并加以运用。
难点是理解多项式乘法法则的推导过程和运用法则进行计算。
【教学过程】
一、回顾与思考
教师引导学生复习:单项式×多项式运算法则;整式的乘法实际上就是
单项式×单项式; 单项式×多项式; 和今天学多项式×多项式
二、创设情景,导入课题
展示:节前语和图片。
展示:课本中三图
图5-5
图5-6
图5-7
一间厨房的平面布局如图5-5,试用几种方法表示厨房的总面积。(师生共同探索,鼓励学生用不同的表示方法完成,然后总结)
由图5-6得总面积为(a+n)(b+m);由图5-7得总面积为a(b+m)+n(b+m)
或ab+am+nb+nm ; 此时提出问题《多项多的乘法》。
三、探索法则与应用
(a+n)(b+m)=a(b+m)+n(b+m)=ab+am+nb+nm
根据分配律,我们也能得到下面等式:
(a+n)(b+m)=ab+am+nb+nm
1、在学生发言的基础上,教师总结多项式×多项式的乘法法则并板书法则。
让学生体会法则的理论依据:
乘法对加法的分配律
多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
2、例题讲题
例1 计算(1)(x+y)(a+2b)
(2)(3x-1)(x+3)强调法则的作用。
例2 先化简,再求值:
(2a-3)(3a+1)-6a(a-4)其中a=2/17
解:(2a-3)(3a+1)-6a(a-4)
=6a2+2a-9a-3-6a2+24a
=17a-3
当a=2/17时,原式=17×2/17-3=-1
3、课内练习
见课本P114
四、拓展延伸,探索挑战
1、拓展演练
(1)(a+b)(a-b) (2)(a+b)2 (3)(a+b)(a2-ab+b2)
(4)(a+b+c)(c+d+e)
2、探索
课本P115 第6题
五、归纳小结,充实结构
指导学生总结本节课的知识点、学习过程等的自我评价。主要针对以下两个方面:
1、多项式×多项式 ;
2、整式的乘法
六、知识留恋、课后韵味
布置作业:作业本,一课一练。
多项式教学设计 篇5
重点、难点分析
重点是多项式除以单项式的法则及其应用。多项式除以单项式,其基本方法与步骤是化归为单项式除以单项式,结果仍是多项式,其项数与原多项式的项数相同。因此多项式除以单项式的运算关键是将它转化为单项式除法的运算,再准确应用相关的运算法则。
难点是理解法则导出的根据。根据除法是乘法的逆运算可知,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算。由于,故多项式除以单项式的法则也可以看做是乘法对加法的分配律的应用。
教法建议
(1)多项式除以单项式运算的实质是把多项式除以单项式的运算转化为单项式的除法运算,因此建议在学习本课知识之前对单项式的除法运算进行复习巩固。
(2)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏项。
(3)要熟练地进行多项式除以单项式的运算,必须掌握它的基本运算,幂的运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行多项式除以单项式的.运算。
(4)符号仍是运算中的重要问题,用多项式的每一项除以单项式时,要注意每一项的符号和单项式的符号。
教学设计示例
教学目标 :
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
重点、难点:
1.多项式除以单项式的法则及其应用.
2.理解法则导出的根据。
课时安排:
一课时.
教具学具:
投影仪、胶片.
教学过程 :
1.复习导入
(l)用式子表示乘法分配律.
(2)单项式除以单项式法则是什么?
(3)计算:
①
②
③
(4)填空:
规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2.讲授新课
例1 计算:
(1) (2)
解:(1)原式
(2)原式
注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.
(2)要求学生说出式子每步变形的依据.
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.
例2 化简:
解:原式
说明:注意弄清题中运算顺序,正确运用有关法则、公式。
练习:(1)P150 1,2,。
(2)错例辩析:
有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为 。
3.小结
1.多项式除以单项式的法则是什么?
2.运用该法则应注意什么?
正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业
P152 A组1,2。
B组1,2。
多项式教学设计 篇6
一、教学目标
【知识与技能】
了解多项式、整式的概念。能准确迅速地确定一个多项式的项数和次数。能用多项式表示实际问题中的数量关系。
【过程与方法】
让学生经历观察、分析、交流,概括出有关概念,发展有条理的思考及语言表达能力和用数学知识解决实际问题的能力。
【情感态度与价值观】
鼓励学生积极参与数学活动,独立思考形成自己的见解,并能与他人合作交流,逐步养成反思与质疑的习惯。
让学生在活动中获得成功的体验,锻炼克服困难的意志,建立自信。
二、教学重难点
【重点】
掌握多项式及整式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
【难点】
确定多项式的次数和项数并和单项式区分开来。
三、教学过程
(一)导入新课
利用复习提问:什么是单项式、系数、次数?
(二)生成新知
1.多项式
观察下列各式
像这样,几个单项式的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
(三)深化新知
注意:
(1)多项式的次数不是所有项的次数之和。
(2)多项式的每一项都包括它前面的符号。
(四)应用新知
1.指出下列多项式的项和次数
(五)小结作业
小结:通过这节课的学习,你有什么收获?
你对今天的学习还有什么疑问吗?
作业:课本课后相关习题
四、板书设计
多项式教学设计 篇7
学习目标:
1.理解并掌握多项式乘以多项式的法则.
2.经历探索多项式与多项式相乘的过程,理解多项式与多项式相乘的结果,能够按多项式与多项式相乘的步骤进行简单的多项式乘以多项式的运算,并达到熟练进行多项式的乘法运算的目的
3.培养数学感知,体验数学在实际应用中的价值,树立良好的学习态度.
学习重点:多项式乘以多项式法则的形成过程以及理解和应用
学习难点:多项式乘以多项式法则正确使用
一、在你的积极尝试中探索发现规律
整式的乘法实际上就是:
单项式×单项式单项式×多项式多项式×多项式
我们已经学习了单项式乘以单项式,单项式乘以多项式,今天我们一起探究:多项式×多项式的有关问题
先思考下面的问题:某地区在退耕还林期间,有一块原长为m米,宽为a米的长方形林区,现在该林区长增长了n米,宽增加了b米,请你求出这块林区现在的面积.你有几种表达?你从计算中发现了什么?
于是,得到多项式与多项式的乘法法则:
用文字表述为:
用式子表示为:
法则的理论依据是:
二、在应用中巩固新知,发展思维能力
★1.计算:(1)(x+2)(x+3)(2)(-3x-1)(2x+1)
★2.计算:(1)(x-3y)(-x-7y)(2)(-2x+5y)(-3x-y)
★★3.若(x+t ) (x+6)的积不含x的一次项,求t的值.
★★4.试说明:代数式(2x+3) (6x+2)-6x (2x+13)+8(7x+2)的值与x的取值无关.
多项式教学设计 篇8
1.理解多项式的概念;(重点)
2.能准确迅速地确定一个多项式的项数和次数;
3.能正确区分单项式和多项式.(重点)
一、情境导入
列代数式:
(1)长方形的长与宽分别为a、b,则长方形的周长是________;
(2)图中阴影部分的面积为________;
(3)某班有男生x人,女生21人,则这个班的学生一共有________人.
观察我们所列出的代数式,是我们所学过的单项式吗?若不是,它又是什么代数式?
二、合作探究
探究点一:多项式的相关概念
【类型一】 单项式、多项式与整式的识别
指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x2+y2,-x,a+b3,10,6xy+1,1x,17m2n,2×2-x-5,2×2+x,a7.
解析:根据整式、单项式、多项式的概念和区别来进行判断.
解:2×2+x,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式.
单项式有:-x,10,17m2n,a7;
多项式有:x2+y2,a+b3,6xy+1,2×2-x-5;
整式有:x2+y2,-x,a+b3,10,6xy+1,17m2n,2×2-x-5,a7.
方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.
【类型二】 确定多项式的项数和次数
写出下列各多项式的项数和次数,并指出是几次几项式.
(1)23×2-3x+5;
(2)a+b+c-d;
(3)-a2+a2b+2a2b2.
解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.
解:(1)23×2-3x+5的项数为3,次数为2,二次三项式;
(2)a+b+c-d的项数为4,次数为1,一次四项式;
(3)-a2+a2b+2a2b2的项数为3,次数为4,四次三项式.
方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.
【类型三】 根据多项式的概念求字母的取值
已知-5xm+104xm-4xmy2是关于x、y的六次多项式,求m的值,并写出该多项式.
解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m+2=6,解得m=4,进而可得此多项式.
解:由题意得m+2=6,
解得m=4,
此多项式是-5×4+104×4-4x4y2.
方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.
【类型四】 与多项式有关的探究性问题
若关于x的多项式-5×3-mx2+(n-1)x-1不含二次项和一次项,求m、n的值.
解析:多项式不含二次项和一次项,则二次项和一次项系数为0.
解:∵关于x的多项式-5×3-mx2+(n-1)x-1不含二次项和一次项,
∴m=0,n-1=0,则m=0,n=1.
方法总结:多项式不含哪一项,则哪一项的系数为0.
探究点二:多项式的应用
如图,某居民小区有一块宽为2a米,长为b米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?
解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.
解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab-πa2)]元.
方法总结:用式子表示实际问题的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.
三、板书设计
多项式:几个单项式的和叫做多项式.
多项式的项:多项式中的每个单项式叫做多项式的项.
常数项:不含字母的项叫做常数项.
多项式的次数:多项式里次数最高项的次数叫做多项式的次数.
整式:单项式与多项式统称整式.
这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.
多项式教学设计 篇9
一、教材分析
1、 本节课的内容和地位
课标要求:理解多项式与多项式相乘的法则,并运用法则进行准确运算。
选用教材:选自华东师范大学出版社出版的《数学》八年级上册第十三章第3节。课题是《多项式与多项式相乘》,课时为1课时。
主要内容:多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加
教材地位:本课学习多项式与多项式相乘的法则,对学生初中阶段学好必备的基础知识与基本技能、解决实际问题起到基础作用,在提高学生的运算能力方面有重要的作用。同时,对平方差与完全平方公式的应用以及杨辉三角等后续教学内容起到奠基作用。
2、教学目标
知识与技能目标:理解并掌握多项式乘以多项式的法则,能够按步骤进行简单的多项式乘法的运算。
过程与方法目标:
1、通过创设情景中的问题的探索,体验数学是一个充满观察、归纳的过程;
2、通过整体处理,再利用分配律的结果与几何图形面积的结果进行比较,培养学生从不同的角度思考数学的意识;
3、通过为学生提供自主练习的活动空间,提高学生的运算能力;
4、借助具体到一般的认知规律,培养学生探索问题的能力和创新的品质。
情感、态度与价值观目标:
学生通过主动参与探索法则和拓展探索等的.学习活动,领悟转化思想,体会数学与生活的联系,感受数学的应用价值,从而激发学习数学的兴趣。
3、教学重点:多项式乘以多项式法则的理解和应用;
4、教学难点:将多项式与多项式的乘法转化为单项式与多项式的乘法,防止漏乘、重复乘和看错符号。
二、教学对象分析
本节课是在学习了“单项式与多项式相乘”的基础上进行的,学生已经掌握了“单项式与多项式相乘”的运算法则,因此没有把时间过多地放在复习旧知上,而是让学生亲身参加探索发现,从而获取新知。在法则的得出过程中,让学生在探索的过程中自己发现总结规律,提高了学生的积极性。在法则的应用这一环节选配一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。
三、教学方法
注重体现教师的导向作用和学生的主体地位。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习。
四、学法
1、自主学习归纳
2、小组讨论
在多项式教学中,让学生理解概念和应用,提高解题能力是至关重要的。希望本文的多项式教学设计方法和技巧能够为您的教学提供实用的建议,让您的学生在多项式的学习中取得更好的成绩。
多项式教学设计 篇10
〖教学目标〗
1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。
2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。
3、会用多项式的乘法解决简单的实际问题。
〖教学重点与难点〗
教学重点:多项式与多项式相乘的运算。
教学难点:例2包含了多种运算,过程比较复杂是本节的难点。
〖教学过程〗
一、创设情境,引出课题
小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?
二、引出新知,探究示例
1、合作探索学习:有一家厨房的平面布局如图1
(1)请用三种不同的方法表示厨房的总面积。
(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?
(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?
(让学生以同桌合作的形式进行探索,然后表达交流)
答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm
(2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①
=ab+am+nb+nm……②
第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。
(3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:
(学生归纳,教师板书)
2、运用新知,计算例题
例1:计算
(1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2
解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by
(2)(3x—1)(x+3)=3×2+9x—x—3=3×2+8x—3
(3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1
教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。
反馈练习:课内练习1
例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=
解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3
当a=时,原式=17a—3=17×()—3=—19—3=—22
注意的几点:(1)必须先化简,再求值,注意符号及解题格式。
(2)当代入的是一个负数时,添上括号。
(3)在运算过程中,把带分数化为假分数来计算。
反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。
2、课内练习2、3。
三、分层训练,能力升级
1、填空
(1)(2x—1)(x—1)=
(2)x(x2—1)—(x+1)(x2+1)=
(3)若(x—a)(x+2)=x2—6x—16,则a=
(4)方程y(y—1)—(y—2)(y+3)=2的解为
2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。
3、某人以一年期的定期储蓄把2000元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?
四、小结
让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。
五、布置作业
课本的分层作业题。
下一篇:返回列表