平行四边形的面积精编教学设计精编5篇

网友 分享 时间:

【导言】此例“平行四边形的面积精编教学设计精编5篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

新课标数学《平行四边形的面积》优秀教学设计1

教学目标:

1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法

2、能用平行四边形面积的计算方法解决简单的实际问题。

3、在操作、观察、比较中,渗透转化的思想方法。

4、在探究活动中,体验到成功的快乐。

教学重点:

推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。

教学难点:

推导平行四边形面积公式

教学准备:

课件平行四边形硬纸片剪刀透明方格纸

教学过程:

一、情境激趣:

师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?

1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺平行四边形的草坪需要多少钱?师:需要先求什么?

生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)

二、实验探究:

1、猜想

那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

2、实验

1)独立自主探究:

师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?

生:我用数格子的方法。

师:数格子时,不足一格的按一格算,把得到的数据填在表格里

师:还有什么方法?

生:我用剪一剪、拼一拼的方法。

师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。

2)小组内交流:

师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。

3)学生汇报:

第一个小组:

(1)数格子(把表格带到前面说)

(2)剪拼

师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)

是这样吗?师课件演示解说强调平移

师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示

(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)

师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底x高)

师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah

三、运用公式解决

师:现在我们来算一下铺这块平行四边形草坪要用多少钱?

(生口算)

四、拓展练习

1、求下列图形的面积是多少?

底15厘米,高11厘米

(不仅准确计算出了结果,速度还很快,真不错。)

2、开放题:这是一张全国地图,有一个省的地形状像平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)

(能在实际问题的解决中恰当运用公式,了不起)

3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)

五、全课小结:

师:这节课,你是怎么学习的?你有哪些收获?

(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写1篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。

课后反思

课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:

1、适时渗透、领悟思想方法

数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。

2、适时引导、主动建构知识

学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。

3、适时点拨、有效进行指导

探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。

熟读唐诗三百首,不会做诗也会吟。以上这5篇平行四边形的面积优秀教学设计是来自于山草香的平行四边形的面积公式的相关范文,希望能有给予您一定的启发。

平行四边形的面积优秀教学设计2

教学内容:

人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。

教学目标:

①理解并掌握平行四边形的面积计算公式。

②会运用公式正确计算平行四边形的面积。

③培养操作能力和推理能力,养成积极思考的良好学习习惯。

教学重点:

理解并掌握平行四边形的面积计算公式。

教学难点:

平行四边形的面积计算公式的推导。

教具和学具:

电脑、课件、平行四边形、长方形、剪刀、尺。

教学过程:

一、前提测评。

1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?

3、指出平行四边形对边上的高。

二、认定目标。

1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]

2、看到这个课题,大家想学习哪些知识呢?

三、导学达标。

(一)用数方格的方法求平行四边形的面积。

(1)以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)

(2)引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?

(3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?

(二)推导平行四边形的面积计算公式。

⑴学生实验操作。

谈话:请拿出你的平行四边形,想办法把平行四边形剪、拼成长方形。

在剪、拼前,大家想一想长方形的特征是怎样的?

a、学生实验操作。

b、问:你是怎样把平行四边形剪、拼成长方形的?

c、电脑显示剪拼过程。

⑵讨论拼成的长方形与原平行四边形的关系。

a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?

①平行四边形与拼成的长方形的面积有什么关系?

②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?

③长方形的面积公式怎样表示?

④平行四边形的面积公式怎样表示?

b、谈话:请看屏幕,根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的`底、高、面积的关系。)

c、板书:

长方形的面积=长×宽

‖ ‖ ‖

平行四边形的面积=底×高

d、齐读两遍公式

(三)实际运用。

1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?

2、学生运用公式计算方格图中的平行四边形的面积。

⑴、学生计算。[板书:6×3=18(平方厘米)]

⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。

3、强调运用公式计算平行四边形面积的条件。

师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?

4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。

⑴出示例题,学生默读一遍:

一块平行四边形菜地,底长米,高米,它的面积是多少?(得数保留整平方米)

⑵审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?

(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?

⑶学生列式计算,一生板演。

⑷评讲。

(五)、实际应用训练。

①课本p

②p

四、教师总结:

你有什么收获?

五、谈话:

刚才你们不是想知道自己做的平行四边形的面积有多大吗?

看谁算得最快?

六、作业:72页

平行四边形面积教案3

教学目标:

1、探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。

2、让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。

教学重点:

探究平行四边形的面积计算公式。

教学难点:

充分理解剪拼成的充分理解剪拼成的长方形与原平行四边形之间和关系。

教学具准备:

平行四边形纸片、尺子、剪刀、课件。

教学过程

一、谈话,揭题:

1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?

2、揭题:平行四边形的面积。

二、探究新知:

问题(一)要求这个()的`面积,你认为必须知道哪些条件?

1、同桌交流

2、反馈:①长边×短边=10×7=70平方厘米

②底×高=10×6=60平方厘米

3、引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?

4、学生动手验证(小组合作)

5、请小组代表说明验证过程

问题(二)为什么要沿着高将平行四边形剪开?

问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?

问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?

1、引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?

2、推导公式:平行四边形的面积=底×高

3、小结

问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?

1、动态演示:引导发现周长不变,面积变大了。

2、动态演示:发现面积变小了。

3、要求平行四边形的面积,现在你认为必须知道哪些条件?

问题(六)是不是所有平行四边形的面积都等于底×高呢?

让学生拿出各自的平行四边形,动手剪拼,看看行不行。

三、应用新知

1.左图平行四边形的面积=?

2.解决例:平行四边形花坛的底是6米,高是4米,它的面积是多少?

四、总结:

1.回想一下今天我们是怎样学习的平行四边形的面积?

2.你还想学习哪些知识呢?

小学数学教案《平行四边形面积的计算》4

一、说教材

(一)教学内容:

义务教育六年制小学数学课本(试用)第八册第三单元“平行四边形、三角形和梯形”中的“平行四边形的面积计算”。

(二)教材分析:

平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

(三)学生分析:

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

(四)教学目标预设:

结合本节课所学知识特点和学生的思维特点现拟定如下目标:

1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。

3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。

4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的`密切联系。

(五)教学重点、难点及关键点剖析:

通过实践理论――实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

(六)教具、学具准备:

多媒体、平行四边形,学生准备任意大小的平行四边形纸片、三角板、剪刀。

二、说教法、学法

(一)设计理念:

《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动地参与学习过程。

“问题是数学的心脏。”、“问题是一切思维的起点。”在教师创设的情境中,学生利用原有的知识和技能无法直接解决问题,就会产生认知上的矛盾、内在的需要和学习的驱动力,从而积极、主动地去学习。

数学学习活动是一个以学生已有知识和经验为基础的主动建构过程,学习者能否主动建构形成良好的认知结构,取决于原有的认知结构里是否具有清晰、可同化新知识的观念,以及这些观念的稳定情况,所以教师不仅应从整体上把握教材知识结构,而且应从纵向考虑新旧知识是如何沟通联系的。

每个人都以自己的方式理解事物的某些方面,学习过程要增进学习者之间的合作,使其看到那些与自己不同的观点,完善对事物的理解,教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,应成为学生学习的高级伙伴或合作者。教师应重视师生之间、生生之间的相互作用,通过创设情境和组织学生合作与讨论,使学生认识事物的各个方面,在已有知识和经验的基础上建构新知识。

学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。未来的社会既需要学生具有获取知识的能力,也需要学生具有应用知识的能力,而知识也只有在能够应用时才具有生命力,才是活的知识。

(二)说教法

本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。

在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。

在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。

在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。

(三)说学法

坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。

小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。

三、教学过程

为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:

(一)创设情境,设疑引入

王林家和张强家各有一块地,如图:

4米 4米

王林家 张强家

6米 6米

可是谁家的地面积能大些呢?他俩都想知道,同学们,你们愿意帮助他们吗?大家先猜猜看?让学生猜想长方形和平行四边形面积的大小?为什么?主要是向学生暗示了当长方形与平行四边形长与底,宽与高分别相等时,它们的面积会相等,初步感知到平行四边形的面积与底和高有关。王林家的地是长方形,我们能求出面积。而张强家的地是平行四边形,怎样来求平行四边形的面积呢?这就是我们今天要研究的平行四边形的面积计算。

这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。

(二)操作探索,推导公式

1、数方格法求面积(出示)

给上面的二块地的长、宽与底、高分别缩小100倍(变成了6厘米和4厘米)再加上网格,如上图,(不满一格按半格计算,每小格表示1平方厘米)数完后,你发现了什么?

这样设计,让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积=底×高。

2、动手实践,推导公式

①实践操作

教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。那么平行四边形的面积到底与什么有关?再通过出示:当平行四边形的高不变,它的面积随着底边的缩小而缩小,说明平行四边形的面积与底有关;当平行四边形的底不变,它的面积随着高的缩小而缩小,也说明了平行四边形的面积与高有关。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出平行四边形的面积呢?然后让学生实践操作,想办法把平行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将平行四边形转化成长方形。

让学生通过动手操作拓展了学生思维的空间,这样不仅强化平移转化方法在实际中的应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。

②归纳方法

提问:剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

3、学习例题

例 一块平行四边形的草地,底是18米,高是10米。这块草地的面积是多少?

这道例题及时地巩固了所学知识。

(三)巩固练习,应用深化

1.现在我们不用数方格的方法,也能知道王林家和张强家地面积的大小了。并完成P71 试一试

2.完成P71练一练1、2

3.选择正确的算式:

求出下图的面积(单位:分米)

A.12×5( ); B.12×10( ); C.10×6( ); D.5×6( )。

4.猜谜游戏:

有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少分米?看谁猜出的答案最多。

并说明等以后学习了分数乒,还会有更多的答案。

5.思考题

用铁丝围一个右图这样的平行四边形,至少需要用多长的铁丝?

(单位:厘米)

(四)全课总结,质疑问难

让学生说说本节课学到的知识,并说说是怎样学到的,还有什么问题要与教师或同学们商讨吗?目的是使学生对本节课所学的知识有一个系统的认识,培养学生整理知识的能力,和质疑问难的能力。

附板书设计: 长方形面积= 长×宽

平行四边形面积= 底×高

四、说预设效果

这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生在实践中理解新知,并尽可能地从多角度来验证结论,这使学生求异思维和创新能力得到最大限度的训练。培养了学生动手操作能力,逻辑思维能力,使学生掌握学法,为学习提供一把释疑解难的钥匙。

《平行四边形的面积》五年级数学教案5

教学目标:

知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。

能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。

情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。

教学重点和难点

教学重、难点:

理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。

培养学生运用公式解决实际问题的能力。

教学过程:

(一)创设情境,设疑引入

谈话:出示两个美丽的花坛(课件呈现)。

提问:请大家观察一下,这两个花坛哪一个大呢

然后给出长方形的长和宽让学生计算长方形的面积。

提问:那平行四边形的面积你会算吗?从而导入新课。

(二)操作探索,获取新知

1、数方格感知平行四边形和长方形之间的关系

(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)

(2)汇报交流自己的发现。

小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

2、应用“转化”思想,引入割补、平移法

(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)

(2)精彩展示:要求边讲边操作。

提问:为什么都要转化成长方形?

为什么一定要沿着高剪开呢?

接着电脑演示其它方法,渗透割补、平移法

3、建立联系,推导公式

(1)小组合作探索:

a、原来的平行四边形转化成长方形后,什么变了?什么没变?

b、拼成长方形的长与原来平行四边形的底有什么关系?

c、拼成长方形的宽与原来平行四边形的高有什么关系?

d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)

(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

提问:用字母怎么表示呢?自学课本。

学生回答s=ah(板书)

提问:s、a、h分别表示什么呢?

提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

(三)巩固应用,内化新知

前面的花坛题:

课本第2题:你能想办法求出下面两个平行四边形的面积吗?

拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?

(四)课堂总结,深化新知师:同学们,通过今天的学习,你有什么收获呢?

22 112485
");