三角形内角和精编教学设计【精选5篇】

网友 分享 时间:

【导言】此例“三角形内角和精编教学设计【精选5篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

角形内角和教学设计【第一篇】

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

了解三角形三个内角的度数。

教学难点:

理解三角形三个内角大小的关系。

教具学具准备:

课件三角形若干量角器剪刀。

教材与学生

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

一、呈现真实状态。

师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]

三、自主探索、研究问题、归纳总结:

师引导提问:三角形的内角和会不会就是180呢?

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)

(3)把你没有想到的方法动手做一次

(使学生更直观地理解三角形的内角和是180的证明过程)

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示

撕拼法:

1、教师取出三角形教具,把三个角撕下来,拼在一起,

2、师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现

三角形三个内角和等于180?

意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率

四、巩固练习,知识升华。

1、完成课本第28页的“试一试”第三题。

2、想一想:钝角三角形最多有几个钝角?为什么?

锐角三角形中的两个内角和能小于90吗?

3、有一个四边形,你能不用量角器而算出它的四个内角和吗?

意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。

五、总结延伸

这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:

当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。

北师大版三角形内角和优秀教学设计【第二篇】

教学目标

1、让学生探索与发现三角形的内角和是180°,根据已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,会用三角形的内角和解决简单的生活问题,激发学生学习数学应用数学的兴趣。

教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题。

教学难点:让学生经历探索和发现三角形的内角和是180°的过程。

教学过程:

(一)、激趣导入:

1、认识三角形内角

我们已经认识了什么是三角形,谁能说出三角形有什么特点?在三角形内有三个角,我们把三角形里面的这三个角分别叫做三角形的内角。

2、设疑激趣

现在三角形家族为了一件事正在争论,我们来帮帮它们。(播放课件)

同学们,现在出现了两种不同的意见,有的认为大三角形的内角和大,还有的认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)

(二)、动手操作,探究新知

1、探究特殊三角形的内角和

师拿出两个三角板,问:它们是什么三角形?

请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的。内角和。

从刚才两个三角形内角和的计算中,你们发现了什么?

2、探究一般三角形内角和

(1).猜一猜。

猜一猜:那么,其它三角形的内角和是多少度呢?(可能是180°)

(2).操作、验证一般三角形内角和是180°。

所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

那就请大家在小组共同计算吧!

请每个同学都拿出自己准备的不同的三角形,并量出每个内角的度数,求出它们的内角和,把结果填在表中:

(3)小组汇报结果。

提问:你们发现了什么?

小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。

3继续探究

(1)动手操作,验证猜测。

大家的意见不统一,结论不一样,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?

(先小组讨论,再汇报方法)

大家的办法都很好,请你们小组合作,动手操作。

(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。

学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)

我们可以得出一个怎样的结论?(三角形的内角和是180°)

引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,使学生证实三角形内角和确实是180°,测量计算有误差。

5、辨析概念,透彻理解。

(出示一个大三角形)它的内角和是多少度?

(出示一个很小的三角形 )它的内角和是多少度?

大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。

经过一翻激烈的讨论探究后,学生发现: 三角形不论位置、大小、形状如何,它的内角和总是180°

(三)小结

刚才同学们用很多方法证明了什么?现在齐读板书:“三角形的内角和是180°”。

(四)、巩固练习,拓展应用:

1、求三角形中一个未知角的度数。

(1)在一个直角三角形中,已知其中一个锐角是30°,求另一个锐角度数/

(2)在三角形中,已知∠1=100°,∠2=40°,求∠3。

2、判断

(1)一个三角形的三个内角度数是:90°、75°、25°。( )

(2)小明说:他画的钝角三角形比小方画的锐角三角形内角度数大。( )

(3)直角三角形的两个锐角和等于90°。 ( )

3、解决生活实际问题。

(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

(2)红领巾是钝角三角形,顶角度数是120度,求其中一个底角的度数。

(四)、课堂总结

通过这节课的学习,你有哪些收获?

北师大版三角形内角和优秀教学设计【第三篇】

教学内容分析:

三角形的内角和是180o是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

教学对象分析

:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

教学目标:

1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件、各种三角形等。

学具准备:三角形、剪刀、量角器等。

教学过程:

一、出示课题,复习旧知

1、认识三角形的内角。

(1)复习三角形的概念。

(2)介绍三角形的“内角”。

2、理解三角形的内角“和”。

设计理念通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

二、动手操作,探究新知

1、通过预习,认识结论,提出疑问

2、验证三角形的内角和

(1)用“量一量、算一算”的方法进行验证

①汇报测量结果

②产生疑问:为什么结果不统一?

③解决疑问:因为存在测量误差。

(2)用“剪一剪、拼一拼”的方法进行验证

①指导剪法。

①分别拼:锐角三角形、直角三角形、钝角三角形。

③验证得出:三角形的内角和是180°。

(3)用“折一折”的方法进行验证

①指导折法。

①分别折:锐角三角形、直角三角形、钝角三角形。

③再次验证得出:三角形的内角和是180°。

3、看书质疑

设计理念此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

三、实践应用,解决问题:

1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

2、求出三角形各个角的度数。(图略)

3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

70°,它的顶角是多少度?

4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

5、数学游戏。

设计理念练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

四、总结全课、延伸知识:

1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

2、知识延伸:给学生介绍一种更科学的验证方法——转化。

设计理念课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

角形内角和教学设计【第四篇】

教学内容:

人教版四年级下册第85面——87面。

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。

3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的发现过程。

教学准备:

教具:多媒体课件、三角板一个、两个完全一样的直角三角形。

学具:锐角三角形、直角三角形、钝角三角形各一个。

教学过程:

(一)创设情境,提出问题。

师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,

今天老师还给大家带来了一个老朋友,请看,是什么?

生:三角形!

师:前面我们已经认识了三角形,谁能给大家介绍一下?

学生讲学过的三角形知识。

(学生叙述到部分主要内容即可)

师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)

师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?

师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。

师:有谁知道这个三角形三个内角的度数?

(FLASH:生说完后师点击出第二个三角形,边说边点出度数)

[U1]试一试,看谁算得快。

师:谁来说说自己的计算过程?

[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是180度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生:……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

[U3]

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

(预设:如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师:那请你说一下你度量的结果好吗?

(生汇报度量结果)

师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?

生:180度。

师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

《三角形的内角和》教学设计【第五篇】

一、教学目标

1.知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.过程与方法目标: 经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

3.情感态度价值观目标: 在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

二、教学重难点

重点:掌握三角形内角和定理。

难点:理解三角形内角和定理推理的过程。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是三角形内角和,下面我将正式开始我的试讲。

上课,同学们好,请坐。

导入

同学们,上课之前呢我们先来看一下大屏幕,老师给大家准备了几张照片我们来看一下,在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。

那同学们,大家同不同意它的说法呀,老师看到同学们都很疑惑的样子,没关系,今天这位节课我们就一起来研究一下这个问题,学习一下——三角形的内角和。

新授

活动一:

那同学们,接下来啊我们拿出尺字,画出几个三角形,然后测量并计算一下,三角形3个内角的和各是多少度呢?给大家三分钟时间同桌之间相互交流一下这个问题。

老师看到同学们都安静了下来,第三排这位同学,你来说一说你们两个人的结论。哦,他说呀他们发现他们两人画出的直角三角形内角和都是180度,你们的思路非常清晰,请坐!后边同学有不同意见,你来说,他说呀他们两人画出的锐角三角形也是180度。也是正确的,请坐!

活动二:

那同学们,是不是所有的三角形的内角和都是180°呢?如何进行验证呢?

那接下来5分钟我们前后排4个人一小组进行讨论,待会啊老师会找同学提问。

老师看到同学们都很迷茫,给大家一点小提示,我们可以用剪拼的形式来验证一下。

好时间到,哪位同学来告诉一下老师,你们的讨论结果呢。你们小组讨论的`最激烈,你来告诉一下老师,他说呀他们小组是将三种不同类型的三角形的三个角剪下来,再拼一拼,发现都拼成一个了平角,你们的方法非常独特,请坐!那大家的方法和它们的方法是一样的吗?

看来同学们的思路都非常的清晰,那同学们,由此我们就验证得出了,三角形的内角和就是180度。

观察一下黑板上这些内容,以上就是本节课所要学习的三角形内角和。

巩固练习

通过本节课的学习,相信大家对平行四边形有了更深的了解。我们看向黑板,接下来给大家两分钟时间来做一下这道题巩固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度数。课代表来黑板上板书一下。老师看到同学们笔都放下了,我们一起来看一下黑板上同学的答案,∠3=15°,同学们的答案和他的是一样的吗,看来同学们对本节课知识的掌握都已经非常扎实了。

课堂小结

不知不觉本节课马上就接近了尾声,哪位同学来说一下本节课你都有哪些收获呢?(停顿2秒)第二排手举得最高这位同学你来说一下,哦,他说啊,通过本节课的学习他掌握了三角形当中一个新的特点,三角形的内角和是180度,总结的非常全面见,请坐!

作业布置

接下来老师来给大家布置个小任务,回家之后仔细观察一下家中的物体,看一看那些物品是三角形的,动手测量一下内角和,看一看是否满足180度,下节课一起来交流讨论一下,今天这节课就上到这里,同学们再见。

22 51204
");