有理数的混合运算教学设计【精选4篇】

网友 分享 时间:

【前言导读】此篇优秀范文“有理数的混合运算教学设计【精选4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

有理数的混合运算教学反思【第一篇】

对于有理数的混合运算,关键要把握两点:第一,运算问题;第二,符号问题。如果这两点弄清楚了,对于有理数的混合运算也就基本掌握了。上完这节课后,我感到有优点,也有不足。为了进一步搞好教学,特对这节课做了以下反思总结:举范例,让学生自主学习。加强了对混合运算的认识和了解。首先让学生自主学习弄清有理数的混合运算顺序:加减是第一级运算;乘除是第二级运算;乘方和开方是第三级运算;以及有括号时先算括号里面的。然后给同学们几个混合运算,并提出:你能读出这个式子吗?你能快速找出出它的运算符号吗?你能快速说出它的运算程序吗?然后让学生在组内采取你答我评的方式,使学生既掌握了运算顺序,又培养了学生的语言表达能力,最后再进行运算,比一比谁的计算更快更准确。同时培养了学生的参与意识和竞争意识,并且板演。这样,不仅能更好地激发学习兴趣和热情,更能培养学生发现问题、解决问题的能力。

不足:

1、对于学生出现的问题,老师应再次强调,讲明道理,并进行总结,最后再加强几个同种类型的训练题,效果可能会更好些。

2、对于学生的激励不足。比如在进行24点游戏中,后来陆续得出正确答案的同学也应给予赞扬和鼓励,他们锲而不舍的精神,体现了坚持就是胜利!

3、教学的安排未能更好的结合本班的实际情况,有部分学生对于有理数的混合运算还有疑虑,后期还得加强练习,分批过关。

总之,反思是教师成长的必经之路,只有不断地反思,才能使学生得以成长,教师得以发展,才能再教学上取得更大的进步。

有理数的混合运算教学反思【第二篇】

有理数的运算是数学中很多其他运算的基础,培养学生正确迅速的运算能力,是数学教学中的一项重要目标,在加减乘除、乘方这几种运算基本掌握的前提下,学生进行混合运算,首先应注意的就是运算顺序的问题,教师应告诉学生这几种运算可以分成三级:其中加减是第一级运算;乘除是第二级运算;乘方与开方是第三级运算。

组织学生讨论有理数混合运算顺序,在教学时,要注意结合学生平时练习中出现的问题,及时纠正学生在运算上出现的问题,特别是加入乘方以后,学生对乘方运算不熟悉,容易算成加法或底数与指数相乘。学生在运算符号多的时候容易出错,需要进行针对性讲解。

对于有理数混合运算,关键要把握好两点,运算顺序和符号,不必让学生训练太繁琐、太复杂的计算。

反思本节课,存在以下问题:教学方式单一,由于教师总是担心学生忽略计算基本要点,又担心学生做题很慢,影响教学进度,因此给学生单独练习的时间很少,基本上都是老师带着学生一起算,这样并不能看出学生在计算中存在的问题,也就没能及时给予纠正。在作业中,出现了许多问题,在各类运算中不能够正确确定符号,对绝对值的处理不当,尤其是乘方运算的不同形式,如(2)3和-23这类计算出错率较高,部分同学将五种基本运算混合在一起,就乱了套。站在更高的角度去认识教材,站在平等的角度去对待学生。认真钻研教材,增加自己的知识储备量,把教材钻深、吃透真正理解教材的本意,然后去发展、延伸,只有这样才能达到事半功倍的效果,教师不能只停留在教材的表面,知其义而不知其理,这样只能是依样画瓢。再就是我觉得不能以教师的眼光去看学生,要和他们站在同一高度上去看待问题,发现学生出错的真正原因,共同去解决出现的问题。

有理数的加减混合运算【第三篇】

教学目标 

1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

3.通过加法运算练习,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。

由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。

(二)知识结构

(三)教法建议

1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

2.关于“去括号法则”,只要学生了解,并不要求追究所以然。

3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

-3-4表示-3、-4两数的代数和,

-4+3表示-4、+3两数的代数和,

3+4表示3和+4的代数和

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。如

12-5+7 应变成 12+7-5,而不能变成12-7+5。

教学设计示例一

有理数的加减混合运算(一)

一、素质教育目标

(一)知识教学点

1.了解:代数和的概念。

2.理解:有理数加减法可以互相转化。

3.应用:会进行加减混合运算。

(二)能力训练点

培养学生的口头表达能力及计算的准确能力。

(三)德育渗透点

通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。

(四)美育渗透点

学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。

二、学法引导

1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。

2.学生写法:练习→寻找简单的一般性的方法→练习巩固。

三、重点、难点、疑点及解决办法

1.重点:把加减混合运算算式理解为加法算式。

2.难点:把省略括号和的形式直接按有理数加法进行计算。

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片。

六、师生互动活动设计

教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。

七、教学步骤

(一)创设情境,复习引入

师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:

-9+(+6);(-11)-7.

师:(1)读出这两个算式。

(2)“+、-”读作什么?是哪种符号?

“+、-”又读作什么?是什么符号?

学生活动:口答教师提出的问题。

师继续提问:(1)这两个题目运算结果是多少?

(2)(-11)-7这题你根据什么运算法则计算的?

学生活动:口答以上两题(教师订正).

师小结:减法往往通过转化成加法后来运算。

教法说明为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础。这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作。

师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题有理数的加减混合运算(1))

教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成。

(二)探索新知,讲授新课

1.讲评(-9)+(-6)-(-11)-7.

(1)省略括号和的形式

师:看到这个题你想怎样做?

学生活动:自己在练习本上计算。

教师针对学生所做的方法区别优劣。

教法说明题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算……这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法。

师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成……

学生活动:先自己练习尝试用两种读法读,口答(教师纠正).

教法说明教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。

巩固练习:(出示投影1)

1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来。

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+--.

2.判断

式子-7+1-5-9的正确读法是。

A.负7、正1、负5、负9;

B.减7、加1、减5、减9;

C.负7、加1、负5、减9;

D.负7、加1、减5、减9;

学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答。

教法说明这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。

2.用加法运算律计算出结果

师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加。

-9+6+11-7

=-9-7+6+11.

学生活动:按教师要求口答并读出结果。

巩固练习:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

学生活动:讨论后回答。

教法说明学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。

师:-9-7+6+11怎样计算?

学生活动:口答

[板书]

-9-7+6+11

=-16+17

=1

巩固练习:(出示投影3)

1.计算(1)-1+2-3-4+5;

(2).

2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

学生活动:四个同学板演,其他同学在练习本上做。

教法说明针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。

师小结:有理数加减法混合运算的题目的步骤为:

1.减法转化成加法;

2.省略加号括号;

3.运用加法交换律使同号两数分别相加;

4.按有理数加法法则计算。

(三)反馈练习

(出示投影4)

计算:(1)12-(-18)+(-7)-15;

(2).

学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的。

教法说明这两个题目是本节课的重点。采用测验的方式来达到及时反馈。

(四)归纳小结

师:1.怎样做加减混合运算题目?

2.省略括号和的形式的两种读法?

学生活动:口答。

教法说明小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。

八、随堂练习

1.把下列各式写成省略括号的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.说出式子-3+5-6+1的两种读法。

3.计算

(1)0-10-(-8)+(-2);

(2)-+-+3-4;

(3).

九、布置作业

(一)必做题:1.计算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-+(-)-()-;

(二)选做题:(1)当时,,,哪个最大,哪个最小?

(2)当时,,,哪个最大,哪个最小?

十、板书设计 

随堂练习答案

1.(1)-5+7+3-1;(2)10-8-18+5+6.

2.负3加5减6加1或负3、5、负6、1的和。

3.(1)-4;(2)-;(3)-.

作业 答案

(一)必做题:1.(1)-35;(2);(3)-41;(4)-

有理数的加减混合运算(二)

教学目标 

让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。

教学重点和难点

重点:加减运算法则和加法运算律。

难点:省略加号与括号的代数和的计算。

课堂教学过程 设计

一、从学生原有认知结构提出问题

什么叫代数和?说出-6+9-8-7+3两种读法。

二、讲授新课

1.计算下列各题:

2.计算:

(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;

(7)-6-8-2++;

3.当a=13,b=-,c=-,d=时,求下列代数式的值:

(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;

(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;

(9)(a-c)-(b-d);(10)a-c-b+d.

请同学们观察一下计算结果,可以发现什么规律?

a-(b+c)=a-b-c;

a-(b+c+d)=a-b-c-d;

a-(b-d)=a-b+d;

(a+b)-(c+d)=a+b-c-d;

(a-c)-(b-d)=a-c-b+d.

括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。

4.用较简便方法计算:

(4)-16+25+16-15+4-10.

三、课堂练习

1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:

(1)两个数相加,和一定大于任一个加数。

(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数。

(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号。

(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和。

(5)两数差一定小于被减数。

(6)零减去一个数,仍得这个数。

(7)两个相反数相减得0.

(8)两个数和是正数,那么这两个数一定是正数。

2.填空题:

(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______.

(2)若a<0,那么a和它的相反数的差的绝对值是______.

(3)若|a|+|b|=|a+b|,那么a,b的关系是______.

(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.

(5)-[-(-3)]=______,-[-(+3)]=______.

这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化。

四、作业 

1.当a=,b=-,c=-时,求下列代数式的值:

(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.

2.分别根据下列条件求代数式x-y-z+w的值:

(1)x=-3,y=-2,z=0,w=5;

(2)x=,y=-,z=,w=-;

3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:

(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-

4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?

(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?

5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。

(1)若a,b同号,则a+b=|a|+|b|.

(2)若a,b异号,则a+b=|a|-|b|.

(3)若a<0、b<0,则a+b=-(|a|+|b|).

(4)若a,b异号,则|a-b|=|a|+|b|.

(5)若a+b=0,则|a|=|b|.

6.计算:(能简便的应当尽量简便运算)

课堂教学设计说明

1.本课时是习题课。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。

有理数的加减混合运算【第四篇】

有理数的加减混合运算

同步达纲练习

1.选择题:

(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )

a.-2-3-5-4+3 b.-2+3+5-4+3

c.-2-3+5-4+3 d.-2-3-5+4+3

(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )

a.-10 b.-9 d.-23

(3)-7,-12,+2的代数和比它们的绝对值的和小( )

a.-38 b.-4

(4)若 +(b+3)2=0,则b-a- 的值是( )

a.-4 b.-2 c.-1

(5)下列说法正确的是( )

a.两个负数相减,等于绝对值相减

b.两个负数的差一定大于零

c.正数减去负数,实际是两个正数的代数和

d.负数减去正数,等于负数加上正数的绝对值

(6)算式-3-5不能读作( )

a.-3与5的差 b.-3与-5的和

c.-3与-5的差 d.-3减去5

2.填空题:(4′×4=16′)

(1)-4+7-9=- - + ;

(2)6-11+4+2=- + - + ;

(3)(-5)+(+8)-(+2)-(-3)= + - + ;

(4)5-(-3 )-(+7)-2 =5+ - - + - .

3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)

(1)(-21)+(+16)-(-13)-(+7)+(-6);

(2)-2 -(- )+(-)+(+2)-(+ )-2.

4.计算题(6′×4=24′)

(1)-1+2-3+4-5+6-7;

(2)-50-28+(-24)-(-22);

(3)-(-)-(+)-;

(4) +(-1 )-(+3 ).

5.当x=-,y=-,z=-时,求下列代数式的值(5′×4=20′)

(1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z.

素质优化训练

(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;

(2)-(+2 )-(-1 )-(+3 )+(- )

=( 2 )+( 1 )+( 3 )+( );

(3)-14 5 (-3)=-12;

(4)-12 (-7) (-5) (-6)=-16;

(5)b-a-(+c)+(-d)= a b c d;

2.当x= ,y=- ,z=- 时,分别求出下列代数式的值;

(1)x-(-y)+(-z); (2)x+(-y)-(+z);

(3)-(-x)-y+z; (4)-x-(-y)+z.

3.就下列给的三组数,验证等式:

a-(b-c+d)=a-b+c-d是否成立。

(1)a=-2,b=-1,c=3,d=5;

(2)a=23 ,b=-8,c=-1 ,d=1 .

4.计算题

(1)-(+);

(2)1-2*2*2*2;

(3)(-)-(-12+)+();

(4)-1+8-7

生活实际运用

某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走千米,这时勘察队在出发点的哪里?相距多少千米?

参考答案:

同步达纲练习

1.(1)c;(2)b;(3)d;(4)a;(5)c;(6)c 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2;

3.略4.(1)-4; (2)-80; (3)- (4)-5

5.(1)-4; (2)4; (3); (4)-

素质优化训练

1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-.

2.(1) (2) (3) (4)-

3.(1) (2)都成立。

4.(1)-

(2)

(3)-

(4)-1 第(4)题注意同号的数、互为相反数先分别结合。

生活实际运用

1.上游1 千米

上1篇:有理数的混合运算(1)

下1篇:有理数的混合运算

22 67984
");