解方程教学设计 解方程教学设计【最新10篇】

好文 分享 时间:

通过引导学生理解方程的基本概念,结合实例和互动活动,培养解题能力与逻辑思维,如何有效提升学习兴趣?以下是网友为大家整理分享的“解方程教学设计”相关范文,供您参考学习!

解方程教学设计

解方程教学设计精编 篇1

教学目的:

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

教学重点及难点:理解方程的意义,掌握方程与等式之间的关系。

教具准备:天平一只,算式卡片若干张,茶叶筒一只。

教学过程:

一、游戏导入,揭示课题

1、师生共同做个游戏:用手指指尖顶住直尺,使直尺能保持平衡,感知平衡。

说说生活中,你还见过哪些平衡现象?

2、勤劳聪明的人类根据平衡原理制成了天平,今天我们要借助天平来学习新的知识《解简易方程》。(板书课题)看了课题,同学们想知道些什么?

二、教学新课

1、方程的意义

(1)认识天平:简单介绍天平的`结构和使用方法。

(2)操作天平:

a、一边放两个50克的砝码,另一边放100克的砝码,天平平衡。请学生用一个式子来表示这种关系。(板书:50+50=10050×2=100)

b、一边放一个20克的砝码和一个茶叶筒,另一边放100克砝码,天平平衡。茶叶筒的重量不知道,可以怎么表示?你也能用一个式子来表示这种关系吗?

(板书:x+20=100)

c、让学生操作天平,出现不平衡现象,也用式子表示。

(3)出示天平称东西的示意图,让学生用式子表示。(出示卡片)

30+20=502x+50>10080<2x

3x=180100+20<100+50100+2x=50×3

x―18=2460÷20=3x÷11=5

(4)组织学生观察以上式子。

请同学们观察以上式子,想想能不能将这些式子分分类,并说出你分类的标准。(小组讨论,写下来)

按符号的不同分成两大类(出示实投):

80<2x2x+50>100100+20<100+50

指出:这些用大于、小于号连成的式子左右两边不相等,就叫做不等式。

谁再来说几个等式?同桌互相说几个等式。

30+20=503x=180100+2x=50×3

x―18=2460÷20=3

指出:这些用等号连接成的表示两边相等的式子都叫等式。(板书:等式)

(5)观察以上等式,你能不能再分分类,也说一说你分类的标准?(同桌讨论)

解方程教学设计精编 篇2

教学内容:解简易方程例4(课本第110页)练习二十七第5一9题

教学目的:

⒈进一步掌握转化的思路,正确解答二步计算的方程。

2.在掌握ax±b=c的方程解法的基础上,学会用列方程的方法解答二步计算的文字题。

3.养成分析的习惯,训练严谨的学习态度。

教学过程:

一、复习

⒈解下列各方程,并说明解题的思路与解法根据。

(1)一x=(2)5x=(3)一4x=(4)3×7十5x=

小结:(1)一⑵是最基础的简易方程。只要根据四则互逆关系,就可以求解;⑶一⑷比前二题稍复杂,只要把ax看作一个数,那么二步的问题就转成我们最熟悉的基本方程来解答。

2.用方程表示下列各题的数量关系,并填在横线上:

(1)x的2倍与的和是:

(2)从30里减去x的倍,差是18:

(3)一个数的6倍减去35,差是13:

小结:这些题,如果列综合算式来解答,恐怕不是一件易事,但当我们用方程列式时,却没有那种难的感觉,在方程里,逆向问题变顺向;也就不难了。

二、新授

揭示新课内容;

转化的思路,给我们的解题带来了很大的方便,这节课我们沿着这样的思考方法,继续解简易方程:

板书课题:解简易方程

1.教学补充例:

解方程X一+4=9

(1)分析题意;能不能说出这个方程所表达的相等关系是什么?

很显然方程表示X减去0.8的差加上4得9。

想一想怎么转化,使得这个方程解得更顺些?

让学生议一议,最后取得共识:是应当把X一看作一个加数,问题就好办多了。

⑵议出了基本思路后,可由学生自己尝试解答。

师巡视,确定一生板演:

解:把X一看作加数,那么

X—=9—4

X—=5

X=5十

X=

全班一块用口头检验一下:一+4=5十4=9(正确)

小结比较:前面各题,我们通常把aX看作一个数,而本题则是把(Xl一)的差看作一个数,把题顺利拿下了,说明转化应根据题目的具体情况而定。

(3)完成做一做的1一2解方程X+15一21=6和4(X一)=9

想一想:这两题方程表达的是什么意义,可以把谁看作一个什么数来转化?

师巡视后,作简要的讲评。

⒉例4的教学。

一个数的6倍减去35,差是13,求这个数。

分析:这个问题所提供的相等关系是什么,

根据课复习的第2个题组的训练,学生不难得到,这样可以放手让学生自己解答,只要在格式上注意强调设题即可。

尝试作业后,师可规范板出:

解:设这个数是X。

6X一35=13

把6X看作被减数

6X=13+35

解方程教学设计精编 篇3

教学内容:

教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。

教学目的:

使学生理解和初步学会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。

教学重点:

会ax±b = c这一类简易方程的解法,认识解方程的意义和特点。

教学难点:

看图列方程,解答多步方程。

教具准备:

电教平台。

教学过程:

一、导入

1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。

二、新课

1.教学例2。

出示小老鼠的问题:

出示例2。先让学生自己读题,理解题意。

教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?

学生:含有未知数的等式叫做方程。

教师:那么,要列方程就是要列出什么样的式子呢?

学生:列出含有未知数的等式。

教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?

学生:3x+4 = 40。

教师:很好!谁能再说说这个方程表示的数量关系?

学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。

教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4 = 40,可以怎么想?根据什么解?

学生:可以把原方程看作是“加数+加数 = 和”的运算,因此,根据“加数 = 和-另一个加数”来解。

这样也可以根据“加数 = 和-另一个加数”来解。得出3x = 40-4,再得出3x = 36。

教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。

教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数 = 和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。

2.教学例3。

小猫提出的问题:

教师出示:解方程18-2x = 5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。

教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数 = 被减数-差”得出2x = 18-5,2x = 13,x = 。)

教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x = 5。

教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?

学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x = 5的等号左边只有一步运算,而6×3-2x = 5的等号左边有两步运算。

教师:6×3-2x = 5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x = 5就变成了18-2x = 5。所以,解方程6×3-2x = 5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x = 5解出来。

让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。

教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的关系来求解。

3.课堂练习。

做教科书第109页下面“做一做”中的题目。

先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。

三、巩固练习(小兔子提出的问题)。

1.做练习二十七的第1题第一行的两小题。

先让学生独立做在练习本上,教师行间巡视,仍然要注意检查学生解方程的过程、书写格式及检验的过程是否正确,发现错误及时纠正。做完以后,每一题让学生说一说解的过程和解题的根据。

2.做练习二十七的第2题。

教师用小黑板或投影片出示题目,让两位学生到黑板前来解题,其他学生在练习本上解题。做完以后,指名让学生比较这两个方程的异同点,解法的异同点。

3.做练习二十七的第4题。

让一位学生读题后,教师提问:这道题应该怎样做?能不能先解方程,分别求出两个方程的解,再判断上面的五个数中哪两个数是这两个方程的解?(可以。)

让学生独立做在练习本上,做完以后,集体订正。

四、小结。

出示课题:解简易方程。

解方程教学设计精编 篇4

教学内容:

教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。

教学目的:

使学生理解和初步学会ax±b=c这一类简易方程的解法,认识解方程的意义和特点。

教学重点:

会ax±b=c这一类简易方程的解法,认识解方程的意义和特点。

教学难点:

看图列方程,解答多步方程。

教具准备:

电教平台。

教学过程:

一、导入

1、出示三个小动物,让学生围绕三个小动物提提出问题进行学习。

二、新课

1.教学例2。

出示小老鼠的问题:

出示例2。先让学生自己读题,理解题意。

教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?

学生:含有未知数的等式叫做方程。

教师:那么,要列方程就是要列出什么样的式子呢?

学生:列出含有未知数的等式。

教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?

学生:3x+4=40。

教师:很好!谁能再说说这个方程表示的数量关系?

学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。

教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4=40,可以怎么想?根据什么解?

学生:可以把原方程看作是“加数+加数=和”的运算,因此,根据“加数=和-另一个加数”来解。

这样也可以根据“加数=和-另一个加数”来解。得出3x=40-4,再得出3x=36。

教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。

教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数=和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。

2.教学例3。

小猫提出的问题:

教师出示:解方程18-2x=5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。

教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数=被减数-差”得出2x=18-5,2x=13,x=。)

教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x=5。

教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?

学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x=5的等号左边只有一步运算,而6×3-2x=5的等号左边有两步运算。

教师:6×3-2x=5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x=5就变成了18-2x=5。所以,解方程6×3-2x=5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x=5解出来。

让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。

教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的关系来求解。

3.课堂练习。

做教科书第109页下面“做一做”中的题目。

先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。

三、巩固练习(小兔子提出的问题)。

1.做练习二十七的第1题第一行的两小题。

先让学生独立做在练习本上,教师行间巡视,仍然要注意检查学生解方程的过程、书写格式及检验的过程是否正确,发现错误及时纠正。做完以后,每一题让学生说一说解的过程和解题的根据。

2.做练习二十七的第2题。

教师用小黑板或投影片出示题目,让两位学生到黑板前来解题,其他学生在练习本上解题。做完以后,指名让学生比较这两个方程的异同点,解法的异同点。

3.做练习二十七的第4题。

让一位学生读题后,教师提问:这道题应该怎样做?能不能先解方程,分别求出两个方程的解,再判断上面的五个数中哪两个数是这两个方程的解?(可以。)

让学生独立做在练习本上,做完以后,集体订正。

四、小结。

出示课题:解简易方程。

解方程教学设计精编 篇5

1、根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

2、培养学生的分析能力应用所学知识解决实际问题的能力。

3、帮助学生养成自觉检验的良好习惯。

重点、难点:理解并掌握解方程的方法。

教具准备:多媒体课件

教学过程:

一、复习铺垫

1、方程的意义

师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?

生:含有未知数的等式叫方程。

2、判断下面哪些是方程

师:你能判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234÷a>12

(4)72=x+16(5)x+85(6)25÷y=

生:(1)(4)(6)是方程。

师:你为什么说这三个是方程呢?

生:因为它含有未知数,而且是等式。

二、探究新知

(一)理解方程的解和解方程

1、看图写方程

师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?

生:我知道杯子重100克,水重X克,合起来是250克。

师:你能根据这幅图列出方程吗?

生:100+X=250.

2、求方程中的未知数

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

生1:根据加减法之间的关系250-100=150,所以X=150.

生2:根据数的’组成100+150=250,所以X=150.

生3:100+X=250=100+150,所以X=150.

生4:假如在方程左右两边同时减去100,那么也可得出X=150.

3、验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

生:对,因为X=150时方程左边和右边相等。

师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?

学生自学后汇报。(板书)齐读两个概念。

4、辨析方程的解和解方程两个概念

师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?

生:要看这个数能不能使方程左右两边相等。

师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

5、巩固练习,加深理解。

师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)

生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。

生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。

(二)解简易方程

1、复习等式的性质

师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?

(1)如果5+3=8,那么5+3-3=8()

(2)如果50-13=37,那么50-13+13=50()

(3)如果a-7=8,那么a-7+7=8()

(4)如果X+9=45,那么X+9-9=45()

师:你是根据什么填空的?

生:等式的性质。

师:等式有什么性质呢?我们齐来说一遍。

2、理解方程与等式的联系,引出课题。

师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。(板书课题:解简易方程)

3、出示例1图,列出方程。

师:图上画的是什么?你能列出方程吗?

解方程教学设计精编 篇6

重点、难点:

理解并掌握解方程的方法。

教学过程:

一、复习铺垫

1、方程的意义

师:同学们我们前一段时间学了方程的意义,你还记得什么叫方程吗?

生:含有未知数的等式叫方程。

2、判断下面哪些是方程

师:你能判断下面哪些是方程吗?

(1)a+24=73(2)4x<36+17(3)234÷a>12

(4)72=x+16(5)x+85(6)25÷y=0。6

生:(1)(4)(6)是方程。

师:你为什么说这三个是方程呢?

生:因为它含有未知数,而且是等式。

二、探究新知

(一)理解方程的解和解方程

1、看图写方程

师:同学们真厉害把学过的知识全都记得,请同学观察这幅图(出示57页天平图)从图中你知道了什么?

生:我知道杯子重100克,水重X克,合起来是250克。

师:你能根据这幅图列出方程吗?

生:100+X=250。

2、求方程中的未知数

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

生1:根据加减法之间的关系250-100=150,所以X=150。

生2:根据数的组成100+150=250,所以X=150。

生3:100+X=250=100+150,所以X=150。

生4:假如在方程左右两边同时减去100,那么也可得出X=150。

3、验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们都很聪明用不同的方法算出X=150,研究对不对呢?

生:对,因为X=150时方程左边和右边相等。

师:这时我们说x=150是方程100+X=250的解,刚才我们求X的过程叫解方程。这两个概念具体是怎样的呢?请同学们自学课本57页找出什么叫方程的解?什么叫解方程?

学生自学后汇报。(板书)齐读两个概念。

4、辨析方程的解和解方程两个概念

师:方程的解是未知数的值它是一个数,怎样判断一个数是不是方程的解呢?

生:要看这个数能不能使方程左右两边相等。

师:而解方程是求未知数的过程,是一个计算过程它的目的是求出方程的解。同学们要注意两个概念之间的区别与联系。

5、巩固练习,加深理解。

师:完成做一做:X=3是方程5X=15的解吗?X=2呢?(完成后汇报)

生:X=3是方程5X=15的解,因为X=3时方程左右两边相等。

生:X=2不是方程5X=15的解,因为X=2时左边5×2=10,右边是15,左边和右边不相等,所以X=2不是方程5X=15的解。

(二)解简易方程

1、复习等式的性质

师:前两天我们学会了等式的性质,请根据等式的性质完成填空吗?

(1)如果5+3=8,那么5+3-3=8

(2)如果50-13=37,那么50-13+13=50()

(3)如果a-7=8,那么a-7+7=8()

(4)如果X+9=45,那么X+9-9=45()

师:你是根据什么填空的?

生:等式的性质。

师:等式有什么性质呢?我们齐来说一遍。

2、理解方程与等式的联系,引出课题。

师:(3)(4)题不但是等式而且是方程,我们知道方程是等式的一部分,所以等式的性质对方程同样适用,今天我们将应用等式的性质来帮我们解方程。

3、出示例1图,列出方程。

师:图上画的是什么?你能列出方程吗?

以上就是小编为大家准备的解方程教学设计精编,不知道有没有帮助到你呢?那么本次的分享就到这里啦,我们下次再见。更多精彩资讯请关注本站信息推送。

解方程教学设计精编 篇7

一、教学内容:

人教课程标准实验版第九册P59例2。

二、教学目标:

1、运用知识迁移,结合直观图例,应用等式的性质,让学生自主探索和理解简易方程的解法。

2、通过多种形式的分层练习,让学生较熟练掌握简易方程的解法。

3、帮助学生养成自觉检验的学习习惯。

4、培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

三、教学重难点:

应用等式的性质,理解和较熟练掌握简易方程的解法。

四、教学过程:

(一)知识铺垫。

1、什么叫方程的解?什么叫解方程?

2、解方程:X+15=48X―=

解答后说一说(1)你解这两个方程的依据和方法是什么?

(2)说出等式的另外一个基本性质。

(计算机分别演示等式的两个基本性质。注意“不为0”)

揭示课题:这节课我们就继续利用等式的性质来解简易方程。

板书:解简易方程。

(二)新知学习。

1、教学例2。

(1)出示情景图。

(2)说出图意并列出方程。(从图中你知道了哪些信息?会列方程吗?)

(3)怎样用天平图表示这个方程?(左边是3个X,右边是18)

(4)解方程的目的是求X的值,要使天平的左边只剩下一个X,而天平又保持平衡,两边该怎样分?(两边同时平均分成3份)

计算机动画演示:天平两边各剩一份。问:每份怎样?(分别平衡)

(5)反映在方程上,就是我们学过的等式的哪个基本性质呢?

(6)自主探索,试解方程并检验(会用这个基本性质解方程吗?试试看!)。

评讲(强调书写格式和自觉检验)。

2、指导阅读书P59,质疑。

3、想一想、试一试:解方程X÷3=2。1

自己说一说解题的依据和方法。(强调口头检验)

4、小结:我们已掌握了解方程的一般方法,你认为解方程时需要注意什么?

(下面就检验一下你们是否真正掌握了解方程的方法。)

(三)基础练习设计:

1、说出下列方程的解法。

2、选择正确答案。(全班用手势表示)

(1)X+8=30①X=22②X=38

说说你是怎样判断的?

指出:平时解方程后都可以自觉用代入法进行检验。

3、对比练习。

4、解决问题。(列出方程并解答。)

(1)每个福娃X元,买5个共花80元。

(上面两个问题解决得很好,接下来我们进行一个检测性的分组接力竞赛,有信心赢吗?)

5、学习检测。(接力竞赛)

(四)课堂小结。

这节课学习了什么?

解简易方程的依据和方法是什么?

(看来同学们对今天所学的知识掌握得不错。是的,解方程的依据就是等式的基本性质。我们解完方程后还要养成自觉检验的习惯,一般可以用代入法进行检验。下面我们继续挑战一道有难度的拓展题。)

解方程教学设计精编 篇8

一、教学内容:

人教课程标准实验版第九册P59例2。

二、教学目标:

1、运用知识迁移,结合直观图例,应用等式的性质,让学生自主探索和理解简易方程的解法。

2、通过多种形式的分层练习,让学生较熟练掌握简易方程的解法。

3、帮助学生养成自觉检验的学习习惯。

4、培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

三、教学重难点:

应用等式的性质,理解和较熟练掌握简易方程的解法。

四、教学过程:

(一)知识铺垫。

1、什么叫方程的解?什么叫解方程?

2、解方程:X+15= 48 =

解答后说一说(1)你解这两个方程的依据和方法是什么?

(2)说出等式的另外一个基本性质。

(计算机分别演示等式的两个基本性质。注意“不为0”)

揭示课题:这节课我们就继续利用等式的性质来解简易方程。

板书:解简易方程。

(二)新知学习。

1、教学例2。

(1)出示情景图:

X元 X元 X元

18元

(2)说出图意并列出方程。(从图中你知道了哪些信息?会列方程吗?)

(3)怎样用天平图表示这个方程?(左边是3个X,右边是18)

(4)解方程的目的是求X的值,要使天平的左边只剩下一个X,而天平又保持平衡,两边该怎样分?(两边同时平均分成3份)

计算机动画演示:天平两边各剩一份。问:每份怎样?(分别平衡)

(5)反映在方程上,就是我们学过的等式的哪个基本性质呢?

(6)自主探索,试解方程并检验(会用这个基本性质解方程吗?试试看!)。

评讲(强调书写格式和自觉检验)。

2、指导阅读书P59,质疑。

3、想一想、试一试:解方程 X÷3=

自己说一说解题的依据和方法。(强调口头检验)

4、小结:我们已掌握了解方程的一般方法,你认为解方程时需要注意什么?

(下面就检验一下你们是否真正掌握了解方程的方法。)

(三)基础练习设计:

1、说出下列方程的解法。

①例 = (要解这个方程,方程两边应同时 ?)

( )= ( ) 说:方程的两边同时除以

②抢答: X+= X÷7= = X-27=53

(看来解法掌握得不错,下面看谁的反应最快。)

2、选择正确答案。(全班用手势表示)

(1)X+8=30 ①X=22 ②X=38

说说你是怎样判断的?

指出:平时解方程后都可以自觉用代入法进行检验。

(2)= ①X=7 ②X=

(3)X=5是方程( )的解。 ①15X=3 ②6X=30

(4)X=30是方程( )的解。 ①=6 ②2X=15

(解题和检验的方法明确了,就请大家独立解答下面几个方程吧。)

3、对比练习。

(1)X+6 = (2)X-6=

(3)6X= (4)X÷6=

做完后请你对比4题的解法,思考:在方程的两边什么情况应该同时加,什么情况该同时减,什么情况该同时乘,什么情况该同时除?

(接下来,我们用今天学习的知识解决实际问题。)

4、解决问题。(列出方程并解答。)

(1)

每个福娃X元,买5个共花80元。

(上面两个问题解决得很好,接下来我们进行一个检测性的分组接力竞赛,有信心赢吗?)

5、学习检测。(接力竞赛)

第一组: X-3= 5X= X+=

= X÷6=7 X-42=58

第二组: X-5= 8X= X+=

= X÷4=9 X-36=44

规则:(1)每组的信封里都有一组方程,第一位同学解答完第一题后,再传给下一位同学。

(2)后面每位同学拿到题卡后先检验上一题,发现有错可以修改。然后再解答下一题。

(3)如此类推,直到最后一位同学求出方程的解为止。

(4)最后一个同学把题卡交上来,比比哪个小组做得又对又快。

(四)课堂小结。

这节课学习了什么?

解简易方程的依据和方法是什么?

(看来同学们对今天所学的知识掌握得不错。是的,解方程的依据就是等式的基本性质。我们解完方程后还要养成自觉检验的习惯,一般可以用代入法进行检验。下面我们继续挑战一道有难度的拓展题。)

解方程教学设计精编 篇9

教学内容:

义务教育课程程标准实验教科书数学(人教版)小学数学第9册57―58页的内容。

教学目标:

1、通过学习,使学生知道解方程的方法有两种,并掌握这两种方法。

2、使学生初步掌握解方程,并理解解方程及方程的解的概念。

3、培养学生的分析能力应用所学知识解决实际问题的能力。

重点、难点:

1、理解并掌握解方程的方法。

2、理解解方程及方程的解的概念。

教学过程:

一、复习导入

二、探索新知,出示课本主题图(课件)

(1)根据图画列方程

(2)反馈:

a、X+3=9

b、9―X=3

C、9―3=X

(强调:列方程时X不单独出现在等号的一边,因为这样这个方程没有意义。)

(3)以X+3=9为例教学解方程

三、课堂练习:

1、完成做一做第一题。

2、解下列方程。(用两种方法解决)

四、课堂小结

这节课你有什么收获,跟你的同桌交流一下。

解方程教学设计精编 篇10

教学内容:

人教版五年级上册第68页

教学目标:

1、进一步掌握等式的性质,会运用数量关系式或等式的基本性质对解方程的过程进行语言表述;

2、会对具体的方程的解法提出自己解答的方案并能与同学交流;

3、能够验算方程的解的正确性。

教学重点:

多种方法解方程。

教学难点:

利用等式各部分之间的关系来解方程。

教学过程:

一、复习导入

1、判断以下式子哪些是等式,哪些是方程?并说明理由。

①4+6=10,②4+8x=40,③16—7x,④x÷5=8,

⑤+3x=,⑥x-17<34,⑦=1,⑧8㎡,

⑨6a=30,⑩a+b+c=17

2、解方程,并检验。复习用等式的性质解方程的方法。

①x+10=15②x﹣63=36③20+x=75

指名板演,交流方法,检验解是否正确。总结解方程应注意的事项。

设计参观周三下午的社团活动的大情境,贯穿新授,练习,拓展环节。

一、新授

1、课件图片展示:三年级有12个班,每班x人参加“好吃俱乐部”社团,该社团共48人。

请用方程表示数量关系:12x=48

2、课件图片展示:12个小组成员品尝美食,已经有x个小组尝过了,还剩9个小组在等待。

请用方程表示数量关系:12﹣x=9

3、尝试用多种方法解以上两个方程,女生完成第一道,男生完成第二道,各自独立完成。

4、教师巡视,选取不同方法的解方程方式,要求学生板演。

5、汇报交流,总结,解方程的两种方法:

①可以利用等式的性质来解;

②可以利用等式各部分之间的关系来解。

二、纠错

1、“我爱数学”社团的孩子正在进行一场解方程比赛,老师收到了几份这样的答卷,请你做小老师,给每道题一个合适的评价。

2、课件出示三到五份相同手写答卷,有一份全对,其他每份都有不同的错误,请学生判断,评价。

3、总结,解方程时应注意的事项:

①书写格式:写“解”,等号要对齐;

②正确处理未知数与等式各部分之间的联系;

③检验,以保证方程的解的准确无误。

四、拓展练习。

1、“手工制作”社团的三个小组本周共同完成了60个作品,已知三个小组各自完成的作品数分别为三个连续的自然数,这三个数分别是多少?

2、“数一数二”数学社团在进行趣味测量:一段木头,不知道它的长度,拿一根绳子量木头的长,把绳子拉直,绳子多米;如果将绳子对折过来量,绳子又短1米,问:这段木头有多长?

22 3888138
");