等差数列教学设计实用4篇
【前言导读】此篇优秀范文“等差数列教学设计实用4篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
等差数列教学设计1
课题 等差数列(一)
教学目标
知识与技能目标:
1.理解等差数列的定义; 2.理解等差数列通项公式。
过程与方法目标:
通过学习等差数列的通项公式,培养学生处理数据的能力。情感态度与价值观:
通过学习等差数列的通项公式,培养学生学习数学的兴趣。教学重点
等差数列的通项公式。教学难点
等差数列通项公式的推导。教学设计
本节的主要内容是等差数列的定义、等差数列的通项公式。重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特 点: an1 an d(常数)。
例 1 是基础题目,有助于学生进一步理解等差数列的定义。
教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法。因此,公式的正确性还应该用数学归纳法加以证明。
例 2 是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法。等差数列的通项公式中含有四个量:只要知道其中任意三个量,就可以求出另外的一个量。a1 , d , n, an , 教学备品 教学课件. 课时安排 7课时. *揭示课题
6.2等差数列.
*创设情境 兴趣导入
观察
将正整数中 5 的倍数从小到大列出,组成数列: 5,10,15,20,….
(1)
将正奇数从小到大列出,组成数列:
1,3,5,7,9,….(2)
观察数列中相邻两项之间的关系,发现:从第 2 项开始,数列(1)中的每一项与它前一项的差 都是 5;数列(2)中的每一项与它前一项的差都是 2.这两个数列的一个共同特点就是从第 2 项开始,数列中的每一项与它前一项的差都等于相同的常数.
*动脑思考 探索新知
如果一个数列从第 2 项开始,每一项与它前一项的差都等 于同一个常数,那么,这个数列叫做等差数列.这个常数叫做 等差数列的公差,一般用字母 d 表示. 由定义知,若数列 an 为等差数列,d 为公差,则 an1 an d , 即
an
1 an d()
*巩固知识 典型例题 例1 已知等差数列的首项为 12,公差为−5,试写出这个数列的第 2 项到第 5 项.
解 由于 a1 12, d 5,因此 a2 a1 d 12 5 7 ;
a3 a2 d 7 5 2 ;
a4 a3 d 2 5 3 ;
a5 a4 d 3 5 8.*运用知识 强化练习
1.已知an 为等差数列,a5 8,公差 d 2,试写出 这个数列的第 8 项 a8 .
2.写出等差数列 11,8,5,2,…的第 10 项。*创设情境 兴趣导入
你能很快地写出例 1 中数列的第 101 项吗?显然,依照公式()写出数列的第 101 项,是比较麻烦的,如果求出数列的通项公式,就可以方便地直接求出数列的第 101 项.
*动脑思考 探索新知
设等差数列an 的公差为 d,则
a1 a1 , a2 a1 d , a3 a2 d a1 d d a1 2d , a4
a3 d a1 2d d a1 3d , ......
依此类推,通过观察可以得到等差数列的通项公式
a n
a1
n 1 d.()知道了等差数列an 中的 a1 和 d,利用公式(),可以 直接计算出数列的任意一项。在例1的等差数列{an } 中,a1 12,d 5,所以数列的 通项公式为
an 12 (n 1)(5) 17 5n,数列的第 101 项为 a101 17 5 101 488 .
想一想
等差数列的通项公式中,共有四个量: an、a1、n 和 d,只要知道了其中的任意三个量,就可以求出另外的一个量。针对不同情况,应该分别采用什么样的计算方法? *巩固知识 典型例题
例 2 求等差数列 1,5 ,11 ,17 , ...的第 50 项。解 由于 a1 1, d a2 a1 5 1 6, 所以通项 公式为 an a1 (n 1)d 1(n 1)6 6n 7 即 an 6n 7.故
a50 6 50 7 293.例 3 在等差数列an 中, a100 48, 公差 d 1/3, 求首项 a1.解 由于公差 d 1/3 , 故设等差数列的通项公式为
an
a1 (n 1) 1/3
由于 a100 48,故
a (100 1) 1/3,解得 a1 15.小提示
本题目初看是知道 2 个条件,实际上是 3 个条件:n 100,a 48, d 1/3.
例 4 小明、小明的爸爸和小明的爷爷三个人在年龄恰好构成一个等差数列,他们三人的年龄之和为120 岁,爷爷的年龄比小明年龄的 4 倍还多 5 岁,求他们祖孙三人的年龄。分析 知道三个数构成等差数列,并且知道这三个数的 和,可以将这三个数设为 a d , a , a d ,这样可以方便地求 出a ,从而解决问题。解 设小明、爸爸和爷爷的年龄分别为 a d , a , a d , 其中 d 为公差 则
a d a a d 120, 4a d 5 a d 解得
a 40, d 25 从而
a d 15, a d 65.答 小明、爸爸和爷爷的年龄分别为 15 岁、40 岁和 65 岁。注意
将构成等差数列的三个数设为 a d , a , a d ,是经常使用的方法。*运用知识 强化练习
练习
1.求等差数列 2/5 ,1, 8/5 ,…的通项公式与第 15 项.
2.在等差数列an 中,a5 0,a10 10,求 a1 与公差 在等差数列an 中,a5 3,a9 15,判断-48 是否为数列中的项,如果是,请指出是第几项。4.已知三个数的和为18,且这三个数组成公差为3的等差数列,求这三个数。*理论升华 整体建构 思考并回答下面的问题: 等差数列的通项公式是什么?
结论:
等差数列的通项公式 a n a1 n 1 d.*归纳小结 强化思想
本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测
本次课采用了怎样的学习方法?你是如何进行学习的? 你的学习效果如何?
等差数列教学设计2
等差数列教学设计
教学目标
1. 理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题
2. 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;
3.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点。教学重点
是等差数列的定义和对通项公式的认识与应用 教学难点
等差数列的通项公式与递推公式的结合与应用 教学过程 回顾练习:
观察该数列的性质。从第二项开始,每一项减去前一项的差都是3
观察与思考 下面的几个数列性质并给出结论:(1)38,40,42,44,46,48,50,52,54(2)7500,8000,8500,9000,9500,10000 定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那麽这个数列就叫做等差数列。这个常数叫等差数列的公差,通常用字母d表示。
2,5,7,9,11,13,15,17 2,2,2,2,2,2,2,2,2 探究:
数列满足 判断此数列是否为等差数列。等差数列通项公式
推倒方法:
一、不完全归纳法。
二、迭代法。
三、叠加法 例:
1.求等差数列8,5,2,…的第20项。
2.-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
3.请在12,24中间插入一个数字a,使得12,a, 24成等差数列,则a的值为多少。
练习:数列的通项公式为
研究:三个数成等差数列,它们的和等于18,它们的平方和为116,求这三个数。
实际应用 某露天剧场有30排座位,第一排有28个座位,后面每排比前排多2个座位,最后一排有座位__________个。
总结:
1.等差数列的概念,会判断一个数列是否为等差数列。2.等差数列的通项公式与递推公式及其应用。3.理解等差数列的通项公式及其引申式。作业:必做习题:1——
5、7 选作10、11
等差数列教学设计3
《等差数列》教学设计
河北省卢龙职业技术教育中心
吕敬平
《等差数列》教学设计
一、教学内容分析
本节课是《中等职业教育改革国家规划新教材•数学》基础 模块第六章数列第二节等差数列第一课时。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
二、学生学习情况分析
我所教学的学生是我校高考班的学生,虽然经过一年的学习,但大部分学生知识经验还不丰富,跟他们基础和素质有很大关系,基础较弱,素质不高,学习数学的兴趣也不很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、设计思想 1.教法
⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。2.学法
引导学生首先从简单浅显问题(数数问题)、概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。
用多种方法对等差数列的通项公式进行推导。在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学目标
知识目标:通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用。
能力目标:培养学生观察、分析、归纳、推理的能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
情感目标:在解决问题的过程中培养学生主动探索、勇于发现的求知精神;使学生认识事物的变化形态,养成细心观察、认真分析、善于总结的良好思维习惯。并通过一定的实例激发同学们的民族自豪感和爱国热情。
五、教学重点与难点
重点:
1、等差数列的概念。
2、通项公式的运用。
难点:
1、理解等差数列“等差”的特点及通项公式推导过程。
2、“数学建模”的思想方法。
六、突出重点 突破难点
1、等差数列的概念
由学生的总结自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
思考并交流对概念的理解,并总结: ①“从第二项起”满足条件; ②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:(n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1).9,8,7,6,5,4,„„;√ d=-1
2).,,,,„„;√ d= 3).0,0,0,0,0,0,„„.;√ d=0 4).1,2,3,2,3,4,„„;× 5).1,0,1,0,1,„„×
其中第一个数列公差d0,第三个数列公差d=0 由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式
(1)若一等差数列{an}的首项是a1,公差是d,则据其定义可得: a2-a1=d 即:a2=a1+d a3-a2=d 即:a3=a2+d
„„
猜想: a49= a1+48d 进而归纳出等差数列的通项公式: an=a1+(n-1)d
设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳出通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。
七、巩固新知应用例解
例1 已知等差数列的首项为12,公差为−5,试写出这个数列的第2项到第5项.
例2 求等差数列
1,5,11,17,...的第50项。例3 在等差数列an中,a10048,公差d,求首项a1.这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。
3八、反馈练习 巩固新知
1、已知an为等差数列,a58,公差d2,试写出这个数列的第8项a8.
2、写出等差数列11,8,5,2,„的通项公式和第10项。3、求等差数列2,1, 8 ,„的通项公式与第15项.
55目的:使学生熟悉通项公式,对学生进行基本技能训练和加强建模思想训练。
九、归纳小结、深化目标
1、等差数列的概念及数学表达式an-an-1=d(n≥1)。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
2、等差数列的通项公式会知三求一。
3、用“数学建模”思想方法解决实际问题。
十、布置作业
课本习题6.2
等差数列教学设计4
“等差数列”教学设计
思考:同学们观察一下上面的这三个数列:5,10,15,20,… ①48,53,58,63 ②18,,13,,8, ③看这些数列有什么共同特点呢?(由学生讨论、分析)2.分析问题,形成概念
对于上面的几个问题,引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于 5 ;对于数列②,从第2项起,每一项与前一项的差都等于 5 ;对于数列③,从第2项起,每一项与前一项的差都等于- ; 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上三组等差数列,它们的公差依次是5,5,-。3.合作探究,深化概念
提问:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?
由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A 所以就有
由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。
如数列:1,3,5,7,9,11,13„中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。看来,则
从而可得在一等差数列中,若m+n=p+q下面学习等差数列的通项公式: 对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。
⑴、我们是通过研究数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这三组等差数列的通项公式。让学生分组讨论,教师个别指导经过分析写出通项公式: ①这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),„„由此可以猜想得到这个数列的通项公式是
② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+5×2),第4项是63(=48+5×3),由此可以猜想得到这个数列的通项公式是
③这个数列的第一项是18,第2项是(=),第3项是13(=×2),第4项是(=×3),第5项是8(=×4),第6项是(=×5)由此可以猜想得到这个数列的通项公式是⑵、那么,如果任意给了一个等差数列的首项 引导学生根据等差数列的定义进行归纳:
和公差d,它的通项公式是什么呢?
(n-1)个等式
所以 何表
达
呢
„„
思考:那么通项公式到底如?
„„
通过学生分组讨论合作探究,以及教师引导下得出通项公式:由此我们可以猜想得出:以为首项,d为公差的等差数列的通项公式为:
(教师板书)
就 也就是说,只要我们知道了等差数列的首项和公差d,那么这个等差数列的通项可以表示出来了。
(探究性问题)引导学生动手画图研究完成以下探究:⑴在直角坐标系中,画出通项公式为的数列的图象。这个图象有什么特点?
⑵在同一个直角坐标系中,画出函数y=3x-5的图象,你发现了什么?据此说一说等差数列与一次函数y=px+q的图象之间有什么关系。
可以利用通项公式求出。经
分析:⑴n为正整数,当n取1,2,3,„„时,对应的过描点知道该图象是均匀分布的一群孤立点;
⑵画出函数y=3x-5的图象一条直线后发现数列的图象(点)在直线上,数列的图象是该一次函数当x在正整数范围内取值时相应的点的集合。于是可以得出结论:等差数列的图象是一次函数y=px+q的图象的一个子集,是y=px+q定义在正整数集上对应的点的集合。
下一篇:反比例函数教学设计3篇