简易方程教案【参考4篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“简易方程教案【参考4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

简易方程【第一篇】

难点:根据实际问题中的数量关系正确地列出方程并求解。

二、重点、难点分析

解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。

判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。

列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。

三、知识结构

导入 方程的概念 解简易方程 利用简易方程解应用题。

四、教法建议

(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。

(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。

(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。

(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。

五、列简易方程解应用题

列简易方程解应用题的一般步骤

(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.

(2)找出能够表示应用题全部含义的一个相等关系.

(3)根据这个相等关系列出需要的代数式,从而列出方程.

(4)解这个方程,求出未知数的值.

(5)写出答案(包括单位名称).

概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.

教学设计示例

苏教版简易方程教案【第二篇】

简易方程解决问题教案

教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。下面是简易方程解决问题教案,请参考!

简易方程解决问题教案

学习目标:

1.探索具体问题中的数量关系和变化规律,能用线形示意图和柱状示意图分析问题

2.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。

3.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。

学习难点:

分析与确定问题中的等量关系,线形示意图和柱状示意图分析问题。

教学过程:

一、创设情境,引入新课

问题一:

一个书包进价为60元,打八折销售后仍获利20元,这个书包原定价为_______元

二、合作质疑,探索新知

问题二:一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?

问题三:商店对某种商品调价,按原价的8折出售,此时商品的'利润率是10%,此商品的进价为1600元,商品的原价是多少?

三、自主归纳,形成方法

如何利用线形示意图和柱状示意图分析实际问题

巩固练习:

1、某商品的进价为80元,销售价为100元,则该商品的利润为元,利润率为;

2.小明的父亲到银行存入0元人民币,存期一年,年利率为1,98%,到期应交纳所获得利息的20%的利息税,那么小明的父亲存款到期交利息税后共得款

3.一种商品的买入单价为1500元,如果出售一件商品要获得利润是卖出单价的15%,那么这种商品的卖出单价应定多少元?(精确到1元)

4.商店对某种商品调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,商品的原价是多少?

四、反思设计,分组活动

某人把若干元按三年期的定期储蓄存入银行,假设年利率为为5%,到期支取时扣除所得税实得利息为720元(银行存款所得税的税率为20%,所得税金额=所得利息×20%),求存入银行的本金是多少?

五、发展能力,拓展延伸

购买一台售价为10225元的家用电器,分两期付款,且每期付款相等,第一期款在购买时付清,经一年后付第二期款,这样就付清了全部售价和第一期付款后欠款部分的利息,如果年利率是%,那么每期付款是多少元?

六、课堂小结,感悟收获

通过以上问题的解决,你觉得怎样如何利用线形示意图和柱状示意图分析问题?

课后作业

1.一件商品按成本价提高20%标价,然后打九折出售,售价为270元。这种商品的成本价是多少?

2.某种家具的标价为132元,按9折出售,可获利10%(相对于进货价).求这种家具的进货价。

3.一件夹克杉先按成本提高40%标价,再以八折(标价的70%)出售,结果获利38元,这件夹克杉的成本是多少元?

4.店主老王采购了一批灯管,每根13元,在运输过程中不小心损坏了12根,出售灯管的单价是15元,售完后共获利润1020元,问一共购进多少根灯管?

5.某商店有两种不同的mp3都卖了168元,以成本价计算,其中一个赢利20%,另一个亏本20%,则这次出售中商店是赚了,还是赔了?

6.服装销售中只要高出进价20%就可以盈利,但老板们常以50%~100%标价,假如你准备买一件标价200元的服装,可以在什么范围内还价?

简易方程说课稿【第三篇】

尊敬的'各位老师:

大家好!

《国家中长期教育改革和发展规划纲要》提出“以能力为重,改革教学内容方法,创新人才培养模式”,倡导“学思结合、知行统一、因材施教”的教学理念,构建“鲜活、灵动、高效”的生态课堂、魅力课堂,夯实人才基础。让学生在课堂中有所心动、有所行动,更多是激动。今天我就以《简易方程》为例,谈谈对新课改的理解。

一、教材分析

方程的意义是学生在已经掌握了用字母表示数,可以用一些简单的式子表示数量间的关系的基础上进行教学的,它将为要学习的利用等式的性质解方程及列方程解应用题打下基础。教材在编排上注重让学生根据具体的情景根据各个天平的状态,写出等式或不等式,在相等与不等的比较中,学生进一步体会等式的含义,同时也初步感知方程,积累了具体的素材。

二、教学目标

知识与技能目标:1、理解并掌握方程的意义,体会方程与等式之间的关系。2、会列方程表示生活情境中简单的等量关系。

过程与方法目标:学生在观察、比较、抽象中,经历将现实问题抽象成等式与方程的过程,积累将现实问题数学化的体验。

情感态度与价值观目标:感受方程与现实生活的密切联系,激发学习数学的兴趣。

三、教学重点:方程意义的理解以及在具体情境中建立方程的模型。

教学难点:寻找等量关系列方程。

四、教学过程:为了突出重点,突破难点,并遵循《新课标》理念,通过多种手段让学生学得轻松,学得愉快,形成课堂上教师与学生交往互动,共同发展的情境。我把教学设计分为以下几个环节:

第一个环节:激发热情,引出新知

首先,我以奥运健儿的夺金视频引课,激发学生的学习热情,用更高更快更强的奥运精神,感染着学生,使他们有所心动,以奥运为主题解决相关的数学问题,以“2008年奥运会中国的奖牌数比2012年多12枚”为例,让学生写出不同的等量关系式,并会用含有字母的式子表示出来,从而引出“等式”,这个过程尊重了从学生已有的知识经验出发,大大提高学生的学习兴趣。

顺势进入第二个环节――创设情景,抽象出等量关系情景1:演示天平左边放两个120克的方便面,右边放一个100克的砝码,请学生观察后说一说发现了什么,右边再加多少天平就平衡,就用一个式子表示天平现在所处的状态。(板书:120=100+20)情景2:演示天平左边放上10克砝码,右边放上20克砝码,再次请学生想办法使天平平衡,并用式子表示天平所处的状态。(板书:10+10=20)这两个情景学生非常熟悉,既让学生观察天平从不平衡到平衡的变化过程,()又让学生从天平“平衡”中体会到等式的含义,真正体会天平左右两边的质量相等,可以用等式表示。较好地激发了学生学习的乐趣。

情景3:在前两个情景的基础上,演示出天平左盘放一个20克砝码和右盘放50克的砝码,使学生观察到在天平不平衡,继续演示,再增加x克砝码,又得到20+x=50的等式。(板书: 20+x=50)情景4:让学生看天平,试写出两个等式,加深学生对通过天平表示等式的印象。

情景5:学生在模拟天平上表示出x+300=400这个数量关系。

以上的板书都做成贴片形,可随时移动位置,方便下一环节进行分类。此处这样设计旨在让学生借助天平的平衡原理来更好地理解等式的意义,为学生理解方程的意义打好基础。

第三个环节――探索交流,解决问题

这是整个教学过程中最为重要的一个环节,教师为学生提供一个平等、和谐、愉悦的探究氛围,适时适当引导。我又出示了:“在2012年奥运会上,中国女运动员共得20枚金牌,是日本女运动员的5倍”、“2008年,中国共夺得51枚金牌,比1984年第一次参加奥运会所得金牌的3倍还多6枚。”让学生用含有字母x的等式表示出它们之间的关系,学生自主探索,合作交流,既锻炼了学生的思维,又培养了学生的观察能力、发现能力、创新能力。以学生是本节课中的真正学习的主人,是名副其实的主角,经历着知识的构建与形成的过程。然后让学生经历式子分类的自主探索、合作交流过程,归纳,概括出方程的意义,培养了学生的归纳概括能力,语言表达能力。

第四个环节――巩固应用,内化提高

练习是学生领悟知识,形成技能,发展智力的重要手段,因此本课我遵循“学生自主选择挑战”的原则,以“更高、更快、更强”的精神,激励着学生选择不同练习,促进学生的全面发展。

五、回顾整理,反思提升

出示学习目标:1、认识方程;2、会用方程表示数量关系;3、感受到生活中方程的存在;4、收获快乐。逐一问学生是否达到本节课的目标。让学生自已回味本课在知识技能、与他人合作方面的情感等,从而促进学生的全面发展,并通过同学之间的互相鼓励,发挥评价的激励作用。

六、说板书设计

板书对启迪思维、开发智力、增强记忆,加深学生对知识的理解都起到画龙点睛的作用,因此在板书设计上,我力求重点突出,简明扼要帮助学生理解和建构知识体系。

总之,本课我遵循《新课标》理念,以训练学生思维为主线,在导入中启发学生思维,在新授中创新思维,在练习中发展思维,使学生在掌握知识的同时能力得到锻炼,情感态度价值观得到发展,达到学前的心动,学中的行动,学后的激动,真正实现学生全面发展的目标。

简易方程【第四篇】

简易方程这一小节的前面主要是复习、归纳小学学过的 有关方程的基本知识,提出了算术解法与代数解法的说法,以便以后逐步讲述代数解法的优越性。

例2 解下列方程:

(1) (2)

分析 方程(1)的左边需减去 ,根据等式的性质(2),必须两边同时减去 ,得 ,方程的左边需要乘以3,使 的系数化为1,根据等式的性质(3),必须两边同时乘以3,得 ,方程(2)的解题思路与(1)类似。

解(1)方程两边都减去 ,得

两边都乘以3,得 。

(2)方程两边都加上6,得 。

方程两边都乘以 ,得 ,即 。

注意:(1)根据方程的解的概念,我们可以将所得结果代入原方程检验,如果左边=右边,说明结果是正确的,否则,左边≠右边,说明你求得的x的值,不是原方程的解,肯定计算有错误,这时,一定要细心检查,或者再重解一遍.

(2)解简易方程时,不要求写出检验这一步.

例3甲队有54人,乙队有66人,问从甲队调给乙队几人能使甲队人数是乙队人数的 ?

分析此题必须弄清:一、甲、乙两队原来各有多少人;二、变动后甲、乙两队各有多少人(注意:甲队减少的人数正是乙队增加的人数);三、题中的等量关系是:变动后甲队人数是乙队人数的 ,即变动后甲队人数的3倍等于乙队人数.

解  设从甲队调给乙队x人,

则变动后甲队有 人,乙队有 人,根据题意,得:

答:从甲队调给乙队24人。

三、课堂练习(投影)

1.判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明为什么.

(1)3y-1=2y;  (2)3+4x+5x2;  (3)7×8=8×7  (4)6=0.

2.根据条件列出方程:

(l)某数的一半比某数的3倍大4;

(2)某数比它的'平方小42.

3.检验下列各小题括号里的数是不是它前面的方程的解:

四、师生共同小结

1.请学生回答以下问题:

(1)本节课学习了哪些内容?

(2)方程与代数式,方程与等式的区别是什么?

(3)如何列方程?

2.教师在学生回答完上述问题的基础上,应指出:

(1)方程、等式、代数式,这三者的定义是正确区分它们的唯一标准;

(2)方程的解是一个数值(或几个数值),它是使方程左、右两边的值相等的未知数的值它是根据未知数与已知数之间的相等关系确定的.而解方程是指确定方程的解的过程,是一个变形过程.

五、作业

1.根据所给条件列出方程:

(1)某数与6的和的3倍等于21;

(2)某数的7倍比某数大5;

(3)某数与3的和的平方等于这数的15倍减去5;

(4)矩形的周长是40,长比宽多10,求矩形的长与宽;

(5)三个连续整数之和为75,求这三个数.

2.检验下列各小题括号里的数是否是它前面的方程的解:

(3)x(x+1)=12,(x=3,x=4).

22 1439244
");