《倒数的认识》一等奖教学设计(精选10篇)

好文 分享 时间:

通过多样化的教学活动,激发学生对倒数的理解与应用,培养逻辑思维能力,如何更有效地掌握这一数学概念?以下是网友为大家整理分享的“《倒数的认识》一等奖教学设计”相关范文,供您参考学习!

《倒数的认识》一等奖教学设计

《倒数的认识》一等奖教学设计 篇1

【教案背景】

《倒数》是北师大版小学数学五年级下册第三单元的内容。这部分内容是在学习了分数乘法的基础上,进行教学的。它既与前面的内容有一定的联系,又具有相对的独立性,它是学习分数除法的关键知识,能否正确理解掌握倒数,决定着学生学习分数除法的水平,是学习分数除法的前提和必要条件。

【教学内容】

北师大版小学数学五年级下册第24页的内容。

【教材分析】

《倒数》主要有两部分内容:一是倒数的意义,即什么是倒数;二是倒数的求法。为了使学生对倒数意义的理解更深刻,教材列举了8道两个数乘积为1的乘法算式,设计了“算一算”的活动,目的就是想让学生通过实际计算更直接地感受这组算式中积的特点,从而在观察的基础上进一步发现这些算式的共同特点。教材中的文字内容,易于学生理解倒数的意义,强调倒数是对两个数来说的,不能孤立地说某一个数是倒数。教材中的“试一试”环节,及时巩固新知,教师还可以进一步规范学生的数学语言。“想一想”环节,解决1和0的倒数的问题。“练一练”环节 ,进一步理解和巩固倒数的求法。

【学情分析】

结合本班学生实际和教材特点。学生在理解倒数的意义时,对“互为”一词,会有一些困难,要联系本人和同学们相互成为好朋友来理解,强调倒数的互相依存性。学生对乘积是1,理解时可能会只关注得数是1,要进一步引导学生理解“和、差、商为1时,两个数不互为倒数”。因此,在教学时要创设必要的情境,让学生易于接受。

同时,结合以后学习的需要,教师适当补充带分数、纯小数、带小数这些数的倒数的求法,在掌握分子、分母调换位置求一个数的倒数的方法的基础上,引导学生迁移学习,逐步掌握“先变形,再换位”的方法求倒数。

【教学目标】

1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。

2、掌握求一个数的倒数的方法。

3、在教学活动中,培养学生归纳、推理能力。

【教学重点】

发现倒数的特征,理解倒数的意义。

【教学难点】

掌握求一个数的倒数的方法。

【教学方法】

创设情境、激趣质疑、自主探究、合作学习。

【教学课时】

一课时

【教学过程】

一、创设情境,导入新课

1、谈话:同学们,由于教师调动本学期我成了咱们班的数学老师,经过这几天的相处,我们都互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?

2、猜字谜:

同学们说的很好!咱们再来猜个字谜吧!

“吞”字上下颠倒是什么字?(吴)

“呆”字上下颠倒又是什么字?(杏)

3、引入新课:汉字真奇妙啊,把一个字的上下部分颠倒就可能会变成另外一个字,其实,在数学里也有这种奇妙的现象!你们想知道吗?猜猜看,谁能举出这样的例子。我们给这些数起个名字就叫倒数(板书课题:倒数)

二、观察比较,抽象概念

1、课件出示课本24页8道算式,引导学生观察。

3111812×=() 2×=() ×=() ×10=( ) 22831110

915761×=() 7×=() ×=() ×5=() 776955

2、分组讨论: (1)、这些算式有什么特点?(预设:此处根据学生的回答,分子与分母相互颠倒。)

(2)、这些算式的结果有什么特点?(预设:此处根据学生的回答,乘积是1)

3、小组交流,教师点评。

4、引导归纳倒数的概念:乘积是1的两个数互为倒数。(教师板书,学生口述。)

5、倒数的概念中哪些词比较重要?

(预设:此处根据学生的回答,依次理解两个数、乘积是1、互为倒数。) 同学们可真是火眼金睛啊,关键词都找出来了!让我们再大声说一次什么是倒数。(生齐说概念 )倒数还有什么特点呢?(分子和分母相互颠倒)

6、教师小结:互为倒数的两个数的乘积必须是1,倒数是对两个数来说的,它们是互相依存的’关系,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

7、你能说说大屏幕上的口算题中,谁和谁互为倒数吗?谁的倒数是谁?

生:因为( )×( )= 1 ,所以( )的倒数是 ( ),( )的倒数是 ( ),( ) 和( ) 互为倒数。

(此处引导学生说4句话,在进一步理解倒数意义的基础上,规范学生的数学语言)

8、你还能举出其它的例子来吗?请同桌同学互相说一些互为倒数的

例子,他说得对吗?你们怎么知道是对的?

(预设:用倒数的概念验证,把两个数相乘,看结果是否等于1。如果学生在此处举出特殊数1、0,则顺着学生的想法,及时展开讨论。如果没有则在下一环节进行。)

9、及时练习,巩固新知:我来当小老师。(判断对错,说清理由。)

(1)、2是的倒数。 ( )

(2)、和是1的两个数互为倒数

(3)、计算结果得1的两个数互为倒数。()

(4)、因为×=1,所以是倒数。( )

三、引导探究,掌握方法

1、同学们已经认识了倒数,那么你们能根据刚才所学找到下面各数的倒数吗?(能)那就请同学们进入闯关环节,先独立完成,遇到困难可以同伴互助,看看哪些同学和小组能连闯三关,开始!

2、生开始做题,师巡视。(课件出示)

第一关:的倒数是( ),的倒数是(),的倒数是()。

第二关:4和( )互为倒数,5和( )互为倒数。

第三关:1的倒数是( ),0的倒数是( )。

3、全班交流反馈。

那么0的倒数又是几呢?(有争议)预设:

生:因为1的倒数是1,所以0的倒数是0.

生:可以把0看做,他的倒数就是。

生:对,0不能做分母,也不能做除数,所以0没有倒数。

生:0与任何数相乘都不得1,而是得0,所以我也觉得0没有倒数。 师:小结强化0的确没有倒数。

4、小结闯关情况:连闯三关的同学起立,你们真是善于动脑的同学,好样的,庆祝一下!掌声送给你们!

5、归纳方法:同学们通过闯关已经学会求一个数的倒数了,请你试着总结出求一个数的倒数的方法。

(1)课件:求一个数的倒数,只要把这个数的分子、分母调换位置。

(2)请问:这个数中包含0吗?0有没有倒数呢?

(3)完成板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

(4)课件:演示方法

6、质疑:关于如何求一个数的倒数大家还有什么疑问吗?

预设:

⑴生:我想知道带分数的倒数怎么求?

⑵生:老师我也有一个问题:小数有倒数吗?

以上是《倒数的认识》一等奖教学设计汇总的具体内容,这些精编的优质范文可以在大家需要时提供一些帮助或是灵感上的启发,希望大家都能从上述模板中摘取到对自己有用的信息。

《倒数的认识》一等奖教学设计 篇2

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:,那么我们就说是的倒数,反过来(引导学生说)

是的倒数,也就是说和互为倒数。

和存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:①什么是互为倒数?

怎样理解这句话?(举例说明)

(的倒数是,的倒数是,……不能说是倒数,要说它是谁的倒数。)

②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

3.求一个数的倒数

教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

(能不能写成,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

②深化

你会求小数的倒数吗?(学生试做)

四、训练、深化

1.下面哪两个数互为倒数

(出示课件一下载)

2.求出下面各数的倒数

(出示课件二下载)

3.判断

①真分数的倒数都是假分数。()

②假分数的倒数都小于1。()

③0没有倒数。()

4.提高

会填了吗?

如果末尾加上=1怎么填?

如果末尾加上=0怎么填?

如果末尾加上=2怎么填?

五、课堂小结

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?

六、课后作业

练习六2、3

七、板书设计

《倒数的认识》一等奖教学设计 篇3

一、 教学内容:九年义务教育六年制第九册第二单元《倒数的认识》

二、 教材分析:

倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

三、 教学目标:1.理解倒数的意义,掌握求倒数的方法。

2.能熟练地写出一个数的倒数。

3.结合教学实际培养学生的抽象概括能力。

四、 教学重点:理解倒数的意义,掌握求倒数的方法。

五、 教学难点:熟练写出一个数的倒数。

六、 教学过程:

(一)、 谈话

1.交流

师: 我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么关系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存关系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存关系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

(二)、学习新知

对数游戏

1.学习倒数的意义

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。

师:4是3的4/3,

生:3是4的 3/4

师:7是15的7/15; 生:15是7的15/7。

提问;看我们做游戏的结果,你们有没有发现什么?

《倒数的认识》一等奖教学设计 篇4

教学内容

教科书第28~29页例1、“做一做”及相关内容。

教学目标

1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

教学重点

理解倒数的意义;求一个数的倒数。

教学难点

理解“互为倒数”的含义。

教学准备

教学课件、写算式的卡片。

教学过程

具体内容 修订

基本训练,强化巩固。(3分钟)

1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

2.学生独立完成上面几组题,小组内检查并订正。

创设情境,激趣导入。(2分钟)

请个别学生说说分数乘法的计算方法,突出分子与分母的约分。

提示目标,明确重点。(1分钟)

通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

学生自学,教师巡视。(6分钟)

1. 观察这些算式,如果将它们分成两类,怎样分?

2.通过观察发现算式的特点。

展示成果,体验成功。(4分钟)

让学生说说乘积为1的算式有什么特点。

学生讨论,教师点拨。(8分钟)

1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

3.引导学生思考:互为倒数的两个数有什么特点?

4.探讨求倒数方法。

(1)出示例题,让学生说说哪两个数互为倒数。

(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

《倒数的认识》一等奖教学设计 篇5

教材分析:

本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:知道倒数的意义和会求一个数的倒数

教学难点:1、0的倒数的求法。

教具准备:课件

教学过程:

一、导入

师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~~~~~~~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)

师:好朋友是双向的,可以说成“XXXX为好朋友(也可以说XXXX好朋友)

教师找一对儿同桌,让他们也说说相互间的关系。(XXXX为同桌,一起来上数学课)

二、揭示倒数的意义

师:那今天咱们来学点儿什么呢?

1、(课件出示例7)

请学生动手找找哪两个数的乘积是1?

学生回答教师演示。

2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。

教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数

3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)

师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。

引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。

师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)

4、请你再举个例子和你的同桌说一说。

(学生活动)

5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?

(学生写并汇报师板书。)

三、探索求一个倒数的方法

1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?

(学生畅所欲言,但是一定不规范。)

教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。

3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?

4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)

5、学生自主探索5和1的倒数。

学生先独立思考,在小组交流。

师根据学生的回答及时板书。

6、0的倒数呢?

启发思考,允许讨论。

因为0和任何数相乘都得0,不可能得1。

四、归纳小结

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个分数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)

五、巩固练习

1、完成练习十一第一题。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(7/12=12/7)

师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。

3、完成练习十一第二题。

4、完成练习十一第三题。

5、完成练习十一第四题。

师:请你仔细观察每组数,你发现了什么?

同桌可以先互相说一说。

应该有的汇报是:

生1:我从第一组中发现真分数的倒数都是假分数(大于1)。

生2:大于1的假分数的倒数都是真分数(小于1)。

生3:几分之一的倒数都是整数。

生4:非0整数的倒数都是几分之一。…………

五、全课总结

今天我们学习了什么?你有什么收获?

认识倒数这一小节,就像是1篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。

《倒数的认识》一等奖教学设计 篇6

教学目标:

1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

2、通过互助活动,培养学生与人合作、与人交流的习惯。

3、通过自行设计方案,培养学生自主探索和创新的意识。

教学重点:

理解倒数的含义,掌握求倒数的方法。

教学难点:

掌握求倒数的方法。

教学过程:

一、导入

1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。

2、按照上面的规律填数。

3、揭示课题。今天,我们就来研究这样的数——倒数。

二、教学实施

1、师:关于倒数,你想知道什么?

2、学习倒数的含义。

(1)学生观察教材第28页主题图。

(2)学生根据所举的例子进行思考,还可以与老师共同探讨。

(3)学生反馈,老师板书。

学生可能发现:

每组中的两个数相乘的积是1。

每组中两个数的分子和分母的位置互相颠倒。

每组中两个数有相互依存的关系。

(4)举例验证。

(5)学生辩论:看谁说得对。

(6)归纳:乘积是1的两个数会为倒数。

3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

4、求倒数的方法。

(1)出示例1、

(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。

5、反馈练习。

(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。

(2)完成教材第29页练习六的第1—5题。

三、课堂作业设计

1、找一找下列各数中哪两个数互为倒数。

2、填空。

(1)三分之四的倒数是(),()的倒数是六分之七。

(2)10的倒数是(),()的倒数是1。

(3)二分之一的倒数是(),()没有倒数。

《倒数的认识》一等奖教学设计 篇7

教学内容:

新人教版六年级数学上册第28页的例1。

教学目标:

1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

教学重点:

理解倒数的意义,学会求倒数的方法。

教学难点:

熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

教学准备:

多媒体课件。

教学过程:

一、猜字游戏导入,揭示课题。

上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。

师:谁还能说出这样的数?(课件出示)

象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

二、出示学习目标:

1、理解倒数的意义。

2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

三、自主探究新知

(一)探究讨论,理解倒数的意义。

1、(课件出示教材第24页例1的四个算式。)

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?

(二)深化理解。

1、乘积是1的两个数存在着怎样的倒数关系呢?

举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)

(三)运用概念。

1、讨论求一个数的倒数的方法。

出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置—5/3 7/2的分子分母调换位置—2/7

所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

四、堂堂清作业

(一)填一填。(出示课件)

1、乘积是()的()个数()倒数。

2、a和b互为倒数,那a的倒数是(),b的倒数是()。

3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

4、一个真分数的倒数一定是()。

(二)判断题。(演示课件)

1、5/3是倒数。()

2、因为3/4×4/3=,所以4/3是倒数。()

3、真分数的倒数大于1,假分数的倒数小于1。()

4、因为1/4+3/4=1,所以1/4和/4互为倒数。()

(三)说一说。(课本第29页的第3题)

五、课堂小结:

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

倒数的认识

乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。

2/5的分子分母调换位置一一5/2 7/2的分子分母调换位置—2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

《倒数的认识》一等奖教学设计 篇8

一、教材分析

“倒数的认识”是人教版九年义务教育六年制小学数学第十一册第一单元的内容。本节课是在学生学习了分数乘法的基础上进行教学的,它是分数乘法计算的后继内容,同时又是学习分数除法的先备条件,是属于承上启下的知识类型,主要包含两部分的知识:一是倒数的意义,二是求一个数倒数的方法。内容看似简单,但对学生来说比较抽象,难理解。根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:

1、知识目标:理解倒数的意义,掌握求一个数倒数的方法;

2、能力目标:通过观察、思考、探究,培养学生抽象概括、发现创新、迁移类推、触类旁通的能力;

3、德育目标:培养学生良好的合作意识和刻苦钻研的精神,渗透“万事万物既相互联系又相互转化”这一辩证唯物主义思想。

根据上述观点,我认为本节课的教学重点是:求一个数的倒数的方法。

教学难点是:理解倒数的意义以及带分数、小数的倒数求法。

教学准备:多媒体课件。

二、说教法

基于教材内容比较单调,那么只有在教法上体现新、奇、特,才能让学生想学、要学。在教学过程中,我将始终扮演一个组织者、引导者、合作者的角色,根据小学生从具体的形象思维逐步向抽象的逻辑思维发展的思维特点,联系小学生熟悉的身边实际,使抽象的内容直观化,激发学生的学习兴趣,引导学生去发现问题、讨论问题,放手让他们自主探究,帮助他们在自主探究中真正理解并掌握本节课的数学知识、技能、思想和方法。为此我把本节课的教法归纳为四个字:激、导、放、探。

三、说学法

“倒数”的学习适于学生展开观察、比较、交流、归纳等数学活动,在教学过程中,我将坚持以学生为主体的原则,引导学生从发现乘法算式的特点到从特点出发认识倒数的意义,再从倒数的意义到探究求一个数的倒数的方法,这一过程符合学生由具体到抽象的认知规律,真正做到玩中学、学中玩,合作交流中学、学后交流合作,使学生既学到了知识,又培养了技能。

四、教学程序:

1、课前谈话,渗透“互为”。

在课前准备阶段,我抓住“互为”二字作文章,在谈话中让学生理解“互为”应该是双方面的,例如“老师和大家互相成为好朋友”的意思,可以理解成“老师是你的朋友”,或者“你是老师的朋友”,渗透“互为”这个倒数概念中的关键词语,帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍。

上课铃声响起,为感谢同学们已经把老师当作了朋友,花1分钟时间表演一个变汉字的小魔术,让学生理解感受“倒”的意思,为学习新课作铺垫。

2、巧设比赛,激趣揭题。

首先设计一个“比一比”的环节,引出女生算的乘法算式更简单,乘积全部等于1,让学生仔细观察两个数的特点,尝试给这样的两个数起一个名字,在此基础上小结归纳出倒数的意义,板书揭题。然后抓住关键字“乘积是1”“互为”展开辨析纠错,最后质疑“为什么八分之九孤零零地站在哪里呀?”学生回答后再激趣:“你能帮它找到倒数吗?”从而进入下一阶段的学习。

3、观察思考,探究发现。

这一环节主要要解决的问题是:怎样求一个数的倒数。先让学生根据“乘积是1”这一倒数的意义来求一个数的倒数,然后引导学生仔细观察数据特征,细心体会两个数分子与分母的位置关系,尝试发现求一个数的倒数的方法,然后应用这种方法实践检验,着重引导学生思考“整数、带分数的倒数怎么求?”“是不是所有的数都有倒数?”在这一系列的学习活动后,小结概括出求一个数的倒数的方法也就水到渠成了。

4、闯关练习,小结深化。

该环节以“闯一闯”的形式设计三关练习,紧紧抓住本课重难点,让学生深刻理解所学知识,形成技能:

第一关:填补空白

该练习的目的是进一步巩固求倒数的方法,明确两个数互为倒数,它们的乘积等于1。

第二关:公正裁判

本设计围绕易混易错之处,同时穿插“怎样求小数的倒数”这一教学内容,让学生用手势判断,进行辨析,训练说理能力。

第三关:马小虎的日记

该练习的设计注重对学生的人文培养,既全面考查了学生对本节课的学习掌握情况,同时又是一个课堂小结,可谓一石二鸟。

《倒数的认识》一等奖教学设计 篇9

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及“互为”的含义。

2.正确地求出一个数的倒数。

教学过程设计

一、创设情境,提出问题。

师:我们知道语言文字中有些字是可以倒过来写的。

比如:吴—吞

学生举例:杏—呆。

师:数学中有没有这种情况呢?

你能把4/7倒过来写吗?

板书:4/7一一(7/4)8/3一一(3/8)2一一(1/2)

师:你能根据分子、分母的位置关系给这几组数取个名字吗?

生:倒数。

出示课题:倒数的认识。

二、教学倒数的意义.

(1)5/8×1/8 7/15×5/7 6×1/2 1/40×5

(2)3/4×4/3 6/7×7/6 3×1/3 2/9×9/2

教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都不是1,

第二组每个算式中两个数相乘的积都是1.)

教师:“像第二组这样,乘积是1的两个数叫做互为倒数.”

教师举例说明什么叫做“互为倒数”.

3/4和4/3互为倒数,就是3/4的倒数是4/3,4/3的倒数是3/4.

教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一

个数的倒数,不能孤立地说某一个数是倒数.”

让学生试着说一说第二组其它3个算式中两个数的关系.说的时候,注意让

学生说出“互为倒数”,同时,让学生明确谁是谁的倒数.

教师:“谁还能举出几组两个数互为倒数的例子?”多让几个学生说一说,

并让学生根据倒数的意义来检验是不是正确.

三、教学例题(求倒数的方法).

教师:“请同学们仔细观察上面第二组算式,想想两个什么样的数就互为倒数.如果给你一个数你能找出它的倒数吗?”让学生适当讨论,并对发现的规律

进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

出示例题.“怎样找出的倒数呢?你能用刚才发现的规律找出来吗?”使学生想到只要把的分子、分母调换位置就是的倒数.教师板书:

分子、分母调换位置

─────────→

的倒数就可以让学生自己写.

教师接着问:“自然数5的倒数是多少?5可以看成分母是几的分数?”(可

以看成分母是1的分数.)

“那么5的倒数怎样求?”(把分子、分母调换位置,3的倒数就是1/5.)

教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以

这个自然数作分母以1作分子的分数.)

接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数.)

“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数.)

教师:“请大家总结一下求一个数的倒数的方法.”让学生多说一说,教师

注意提醒学生把排除在外.

四、课堂练习。

写出下面各数的倒数:

4/13 9 1/7 25

反思:本节课的导入部分,我注意从文字中找数学的原形,使学生感到新颖、有趣,激起学生的好奇心,激发学生探究的欲望。并以问题为主线,由学生自己提出问题,自己讨论解决,培养了学生的问题意识,通过学生主动的数学活动建构倒数的意义,掌握求倒数的方法。

《倒数的认识》一等奖教学设计 篇10

教学内容:

新课标六年级上册课本P28页的例1做一做,第29页的练习。

教学目标:

1、知识与技能:通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

2、过程与方法:学生根据自己的理解,发现求倒数的方法。

3、情感态度与价值观:在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

教学重点:理解倒数的意义,学会求倒数的方法。

教学难点:熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

教学过程:

一、创境导课、激发兴趣。

1、 复习:

口算:《倒数的认识》教学设计 《倒数的认识》教学设计 《倒数的认识》教学设计 《倒数的认识》教学设计

2、创境导课、激发兴趣

师:同学们,我们在学习新课之前,来做个文字颠倒游戏,比如老师说:“牙刷”,大家可以说“刷牙”,你们想玩吗?

生:(大声喊道)想!

师:子女

生:女子

3、游戏:倒写

吞———吴 上—下 土—–干

这是语文方面的倒数现象,数学方面把一个数倒一下会有什么现象,你们想知道吗?4/7—7/4 3/2—2/3 1/2—-2/1

师:你们能按照上面的规律再说出几组数吗?(学生举例教师给予肯定。)

3.师:像这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这些上下颠倒的数起个名字吗?(生:倒数)好!今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

4.师:看到这个课题,大家想知道什么?

根据学生回答,选择板书。如:(1)倒数?(2)怎么样求?(3)……

(设计意图)在谈话、游戏情境中引导,培养学生发现问题、提出问题能力。

二、合作探究、解决问题

1.探究倒数的意义。(课件出示算式以及思考要求)

师:(课件出示)同学们请看大屏幕,谁能准确的说出结果。

请同学们拿出练习本,以小组为单位:算一算,找一找,这组算式有什么特点?

小组汇报交流。

学生预设:1.通过计算,我们发现它们的乘积都是1。

2.通过观察,我们发现相乘的两个分数的分子和分母位置是颠倒的。

(3)师:究竟什么是倒数?开动你的脑筋,给它一个完整的答案吧?

(学生独立思考后,组内交流。)

(全班汇报,教师根据学生的汇报点拨引导。)

师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)

2.探究求倒数的方法。

师:那么如何求一个分数的倒数呢?

(1)课件出示分数:3/5、2/7、4/7

A:学生试说。

B:教师板书:例:3/5的倒数是5/3,等等。也可用—(破折号)表示。(规范学生的书写,养成良好的学习习惯)

师:你是怎么想的?

生:只要将分数的分子分母颠倒位置就行了。

(2)师:同学们已经会求一个分数的倒数了。那么整数有没有倒数?

生:预设:有!或者没有。

师:怎么想的?

生:因为任何一个整数都可以看作是分母为一的分数,根据分数的倒数求法,整数是几,它的倒数就是几分之一。

师:非常好!很有条理性,还有什么看法?

生:我认为不是所有的整数都有倒数,因为0和任数相乘都不等于1。

师:嗯!很有道理。你们怎么看?一起商量一下吧?

(小组交流,全班汇报)

(3):师:谁想说说?

生1:我们小组认为整数有倒数,但是需要把特殊的0排除。

生2:我们想补充一下,在整数里,除了0这个数还有1也很特殊。也应该排除。

生3:整数有倒数,但是得排除0和1。

师生总结:大家说的很有道理,整数实际它的倒数就是几分之一,那么1和0有倒数吗?为什么?学生讨论释疑。

预设:

因为1×( )=1,所以1的倒数是1。

而0×( )=1呢?没有。所以0没有倒数。

师:看来同学们掌握的很多,老师要来考考大家,接受挑战吗?

(课件出示练习题)填空,判断题型。(设计意图:随堂练习,及时巩固新知)

(4)、师:我们还学过哪些数?生:小数、带分数。

师:如何求它们的倒数?请同学们小组探究交流。

学生选择一种研究,教师巡视指导。学生交流汇报。

预设:小数倒数求法,先将小数化成分数,再求倒数。带分数的倒数求法,是将带分数化成假分数,再求倒数。(分别请学生举例说明。让学生脑子里有这个思维模式。)

师:综合上边我们学习的内容,我们能不能用一句完整的话来概括求倒数的方法。?

方法:求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

(设计意图)充分调动学生的学习积极性,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

三、巩固练习

师:那老师来考考你,同学们请看下面的题(课件出示)。

老师找学生回答。

1、说出下列各数的倒数。

⑴4/11 的倒数是( ) (2)35 的倒数是( )

⑶4/15的倒数是( ) (4)16/9的倒数是( )

(5)1的倒数是 ( ) (6)的倒数是( )

2、填空:

(1)乘积是( )的两个数互为倒数。

(2)( )的倒数是它本身,( )没有倒数。

(3)A和B互为倒数,则A·B=( )。

3、判断:

(1) 求 2/5 的倒数: 2/5=5/2 。 ( )

(2) 9的倒数是 9/1 。 ( )

(3) 任何真分数的倒数都是假分数。 ( )

(4) 任何假分数的倒数都是真分数。 ( )

(5)A的倒数是1/A。 ( )

4、拓展题。

7/8×( )=1/2×( )=×( )=5/6×6/5=1

4、游戏:五四三二一。(打一数学名词)

(设计意图)多种形式的’练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

四、总结反思、评价体验。

1、这节课你们有什么收获?还有什么疑问?

2、师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!谢谢大家,下课!

(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

五、布置作业。

29页练习六1、2、3题。

六、板书设计

倒数的认识

乘积是1的两个数互为倒数。

求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置

22 4116201
");