乘法分配律教学设计【范例4篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“乘法分配律教学设计【范例4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《乘法分配律》教案【第一篇】

教学内容

人教版四年级下册课本36页例3.

教材与学情定位

本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。

设计理念

1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。

2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?

2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?

教学目标

1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。

2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。

教学重点

从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。

教学难点:

1.理解乘法分配律,体会其优越性。

2.乘法分配律应用中出现的问题如何有效突破。

教学过程

1、同学们我们前面学习过两位数乘两位数,

出示:25×14=

算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。

(师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)

过程:25

×14

100 25×4

25 25×10

350

问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)

师随生动:14分成(10+4)的和乘25

指25×14表示什么?14个25是多少

指(10+4)×25表示什么?14个25是多少?

指10×25+4×25表示什么?14个25是多少?

可以画等号吗?可以

那下面这几个算式表示什么?也可以这样写吗?

设计意图

本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。

出示15×12= 23×16=

学生观察:发现都是两位数乘两位数的运算,表示可以。

师指生描述算式的含义并由学生独立完成算式转换。

学生通过验证认识到:

15×12=(10+2)×25=10×15+2×15

23×16=(10+6)×23=10×23+6×23

16×25=(10+6)×25=10×25+6×25

现在还想等吗?

15×12=(10+2)×25=10×15+2×15

23×14=(10+4)×23=10×23+4×23

16×25=(10+6)×25=10×25+6×25

生:相等。

师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?

生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。

师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)

设计意图

本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。

师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?

生:可以。

2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律

(20+3)×37=

(10+9)×23=

(32+25)×74=

学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?

生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;

左侧三个数,右侧四个数;

……

小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。

设计意图

通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。

师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?

生一:(10+5)×74=10×74+5×74

同意的举手,鼓励的掌声送给他

生二:(10+7)×52=10×52+7×52

生三:(10+9)×24=10×24+9×24

生四:(30+2)×52=52×30+52×2

设计意图

学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。

师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。

(16+△)×51=

(△+■)×○=

引导出字母形式:

(a+b)×c=

师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。

本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。

汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍

小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。

字母形式:(a+b)×c=a×c +b×c

也可以写成a×(b+c)=a×b+a×c

设计意图

本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。

3、看谁算的又对又快:

(4+6)×27 ○ 4×27+6×27

(14+86)×39 ○14×39+86×39

(100+1)×37○100×37+1×37

3×62+5×62+2×62=

集体订正,说学生的做法,怎么做的?怎么想的!

设计意图

通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!

4、判断:

(1)(36+27)×5=36×5+27×5 ( )

(2)(13+79)×12=13+79×12 ( )

(3)(34+61)×43=34×61+43 ( )

(4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )

手势表示,对的举对号,错误的举起十字。

设计意图

本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。

5、情景剧:生活中的握手问题:

两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。

设计意图

学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。

6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?

师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。

《乘法分配律》数学教案【第二篇】

教材分析:

乘法分配率是进行简便计算的一个难点,由于学生没有足够相关的生活经验和类似的认识,因此比较难于把握。故把重点放在引导学生探索问题,通过学生互动,发现规律,提出设想,验证结论,最后灵活运用结论解决问题。

学情分析

由于平时进行课堂教学改革,学生学习数学的热情比较高,一部分学生还喜欢发表自己的见解,借以带动全班的学习,所以我决定创设情景,调动学生自主学习,通过操作、交流突破难点。

学习目标:

1、动手“做”数学;

2、充分发挥“兵”帮“兵”的作用;

3、组织学生解决问题。

设计理念:

根据课程改革的目标,实现以人为本的现代教学观,切实改进课堂教学,改变传统牵着学生走的教学行为。

学生是按照自己的思维方式去认识世界的,因此要组织好学生的活动,让学生通过探索,自己去发现问题,提出问题,从而解决问题,真正落实学生的`主体地位。在教学中,教师能根据学生的情况善导,体现学生会学,并使学生学会科学的学习方法,提高学习质量,强化学习兴趣,不断发展和完善自己。

教学媒体设计:

1、自制多媒体课件,主要是与课题相关的练习(以“小灵通”、摘取“智慧果”的形式激发兴趣,并配备音乐调节情绪,同时利用Powerpoint制作板书设计加大课堂密度)。

2、 实物投影仪;学生准备2厘米和3厘米的小棒各2捆。

教学过程,设计及分析:

一、创设故事情景

教授将手指蘸入煤油和蜜糖的杯子里,用嘴尝得津津有味,但学生跟着做却无一不上当,因为教授伸进的是食指,吸的是中指,以此说明观察的重要性,告诫学生注意下面的操作要认真观察,这其实也是一种思维品质。

二、导入

1、用2厘米和3厘米的小棒各两根,围成一些图形,说一说你用哪些简便的方法算出小棒的总长度,从中发现什么。

学生:(3+2)×2=3×2+2×2

师:你们是怎样发现的?

学生:①通过计算,知道结果是一样的;②无论怎样摆,都是4根小棒,所以总长度是不变的。

(通过学生的摆和说,引导他们向乘法分配率的表达形式逼近)

2、用2厘米和3厘米的小棒各3根,进行类似上面的操作。

学生:这样摆比较有规律,很容易看出小棒的总长度,并且可以知道(3+2)×3=3×3+2×3)。

(让学生把有规律的摆法投影出来)

3、用2厘米和3厘米的小棒各4根,仿照上面再操作。

要求:在学生摆拢以后,以小组为单位进行参观和评价。让学生把有规律的做法进行实物投影,并介绍想法和发现。

学生:

3×4+2×4=(3+2)×4 (8+2)×2=8×2+2×2

7×2+3×2=(7+3)×2 (3+2)×4=3×4+2×4

(6+4)×2=6×2+4×2

分析:通过参观,知道有各种各样的摆法;通过评价,知道我们能创造数学,

发现规律,能灵活地运用知识解决问题,并进一步向乘法分配率逼近。

4、猜想:你能说出类似的例子吗?

(学生自由说,教师把有代表性的写在黑板上。)

如:(12+72)×8=12×8+72×8 25×84+75×84=(25+75)×84

…… …… …… …… …… …… …… …… ……

5、小组讨论。

(1) 根据以上算式的特征进行讨论,讨论后以小组的形式发表见解;

(2) 师生共同归纳各种见解:两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变。

教师:这就是乘法分配率。

板书课题:乘法分配率。

分析:综观传统的教学方法,教师还是牵着学生走,所以乘法分配率是强加给学生的,故学生就容易出错,更谈不上灵活运用了。根据学生的年龄特点和心理特点,教学应该从直观思维入手,而以抽象思维结束,因此,我就采用了“操作──探究──发现”的教学模式进行教学了。

三、新授

1、自学书本;

2、质疑,提出新见解;

3、师生共同解决问题。(充分发挥学生互助作用,以点带动全班的学习。)

4、教师:用公式怎样表示乘法分配率?谈谈你的看法。

(要求学生正确读出公式,引出乘法分配率可以进行简便计算。)

5、形成性练习:用简便方法计算下面各题。

35×37+65×37 102×45 38×99+38

要求:学生想办法,学生说思路,学生评,学生互助并加以改正。

四、小结

(学生以谈体会的形式进行,包括方法、感觉、情感和态度方面)

五、拓展性练习

计算下面各题:12×25 63×25-59×25 38×101-38

说明:这些题目学生是可以用多种方法计算的,目的是训练发散性思维,提高灵活解决问题的能力。在学法上充分发挥“兵”帮“兵”的指导作用。

六、反馈生活中的数学

师:这节课我们学习了乘法分配率,在日常生活中我们也经常运用乘法分配率解决一些问题,你能举出例子吗?

(同位互说,或者小组商量,再发言。)

七、布置作业

1、基础题:第66页第4、7题。

2、思考题:第66页插图。

乘法分配律【第三篇】

教学目标:

1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:

理解和掌握乘法分配律的推导过程。

教学准备:

课件,卡片(课前发给学生)

教学过程:

一、拟定自学提纲 自主预习

1. 创设情境:(多媒体出示24页情境图)

教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?

(学生可能提出 济青高速公路全长大约多少千米?

相遇时大巴车比中巴车多行多少千米?)

(教师把这两个问题板书在黑板上。)

教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。

2. 出示学习目标:这节课的学习目标是:(多媒体出示)

(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。

(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。

教师引导:有信心达到这两个目标吗?(有!)

老师的指导会对你们的学习有很大的帮助,请看自学指导

3. 出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考

(1)如何求济青公路的全长,有几种解法,如何列式计算。

(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

(3)什么叫乘法分配律,如何用字母表示?

5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

4. 学生按自学指导自学,教师巡视,关注学困生。

二、汇报交流 评价质疑

调查学情:看完的同学请举手!看会的请放下。

1.小组交流:学习中你有哪些收获、困惑和体会,请在小组内交流一下。

2.班内汇报:师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

课堂生成预设

(1)济青高速公路全长大约多少千米?

教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

(2)相遇时大巴车比中巴车多行多少千米?

(110-90)×2

=20×2

=40(千米)

110×2-90×2

=220-180

=40(千米)

教师追问:你能说说两种算式的意思么?

预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

(3)观察、比较两种算法的过程和结果,你有什么发现?

预设一:第一种算法是先加(或减)再乘;

预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

(4)据此,你有什么猜想?

预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

(5)怎样验证你的猜想呢?

(师用线段图帮助学生理清思路)

学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

通过观察,有何发现?引导学生回答

举例验证:(125+12)×8 = 125×8+12×8

(40-4)×25=40×25-4×25

(8+16)×125=8×125+16×125

(80-8)×125=80×125-8×125

(6)通过验证,你能得出什么结论?

结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

(板书课题)你会用字母表示这个规律吗?

(用字母表示:(a± b) •c=a•c±b•c)

三、抽象概括 总结提升

1.通过以上研究,你得到了什么结论?

课堂预设

预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。

预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

预设四:这个规律叫乘法分配律,可以用字母表示为

(a± b) •c=a•c±b•c

2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?

课堂预设

举例验证:(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

设计意图:将乘法分配律适当拓展

3.在记忆这个规律时,应该注意什么?

设计意图帮助学生理解、记忆乘法分配律,避免常犯的错误。

课堂预设

预设一:括号里的每一个数都要乘括号外的数。

预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。

预设三:这个规律还可以倒过来看。

教师追问:怎样倒过来看?

预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。

四、巩固应用 拓展提高

教师引导:怎么样?学会了吗?想不想挑战一下自己? 1.考一考(课件出示第26页第2题)

(1) 指4名学困生板演,其余同做在练习本上。

(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。

课堂预设:(以第一题为例)

(80+70)×5   ( 80+70)×5

=80×70+70×5   =80×5+70×5

2.议一议

(1)你认为谁的答案对,为什么?谁的答案不对,为什么?

(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。

(3)用同样的方法评议其余3题。

(4)同桌互改

(5)统计错题情况,让小组代表说说错误原因。

(6)学生各自订正错题。

3.全课小结:你在本节课中有什么收获?

课堂预设

预设一:我知道了什么是乘法分配律。

预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。

预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!

五、当堂训练

1.出示课本第26页第3题

2.《新课堂》第17到第19页信息窗2第1课时内容。

同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。

板书设计:

乘法的分配律

济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?

(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2

验证

(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25

(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125

结论:用字母表示:(a± b) •c=a•c±b•c)

(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

拓展:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

乘法分配律教学设计【第四篇】

一、教材依据

义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)

二、设计思想

“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。

在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。

三、教学目标:

1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;

2、理解和掌握乘法分配律并会用字母表示;

3、能够运用乘法分配律进行简便计算;

4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。

四、教学重点:

引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。

五、教学难点:

乘法分配律的应用,进行一些简便计算。

六、教学准备

多媒体教学课件

七、教学过程

(一)情境导入,发现问题

昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?

课件出示:图片一共贴了多少块瓷砖?

(1)谁能估一估,贴了多少块瓷砖?

(2)谁来用自己的方法来验证估计是否正确?

还有不一样的方法吗?谁来说说看?(生口答,师板书)

板书:6×9+4×9(6+4)×9

=54+36=10×9

=90(块)=90(块)

(3)请同学们观察,看看有什么发现?(学生讨论,汇报)

(二)引导探究,发现规律

1、猜想、验证

(1)能不能利用你的发现举些例子来呢?

生:举例

(2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?

(学生小组合作尝试,进行探索)

2、概括、归纳

(1)说说你们刚才验证的情况。

生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。

生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。

生3……

生4……

(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?

问:我们能不能用一个式(字母)把乘法分配律表示出来呢?

生:(a+b)×c=a×c+b×c

(3)等号表示什么意思?(这个等式反过来也成立)

(三)加强应用、深化理解

我们发现了乘法分配律,它又有怎样的应用呢?

(课件分步出示练习)

1、填一填(课本49面练一练第一题)

2、请同桌同学合用研究下面这些题目,怎样计算比较好?

(80+4)×2534×72+34×28

(1)学生讨论研究;

(2)汇报计算方法,重点说为什么这样算;

(3)小结:通过研究,应用乘法分配律可以使一些计算简便。

(四)巩固练习、解决问题

(课件分步出示)

1、填一填

(10+7)×6=__×6+__×6

8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)

2、同桌合作研究下面这些题目,怎样计算比较好?

(80+4)×2534×72+34×28

2、下面这些题,能用简便方法计算吗?怎样计算?

(20+4)×2532×(200+3)38×29+38×1

39×10138×29+3825×41

(五)课堂小结

1、说说今天我们研究了什么?

2、大家想一想,我们是怎样发现乘法分配律的呢?

3、乘法分配律有什么应用?

22 495373
");