乘法分配律教学设计 乘法分配律教学设计精编5篇

网友 分享 时间:

【导言】此例“乘法分配律教学设计 乘法分配律教学设计精编5篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

乘法分配律教学设计1

教材分析

乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的'教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学情分析

学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长x2+宽x2,周长=(长+宽)x2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节。

教学目标

1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

3、会用乘法分配律进行一些简便计算

重点难点

1、指导探索乘法分配律。

2、发现并归纳乘法分配律。

方法指导

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

预设流程

激趣导入

(约3分钟)

一、创设情境,提出问题:

1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

2、学生思考:(1)有几种搭配方案

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

自主学习

(约7分钟)

(一)组内研讨,确定方案

1、组内研讨:

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的?

合作交流

(约10分钟)

2、汇报交流:

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:A、225加上75的和乘4等于乘225乘4加75乘4

B、225加上75的和乘4等于225和75分别与4相乘的积再相加。)

3、研究其它方案

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书:

一套x4 = 4件上衣+ 4条裤子

(225+75)x4 = 225x4 + 75x4

(225+125)x4 = 225x4 + 125x4

(175+75)x4 = 175x4 + 75x4

(175+125)x4 = 175x4 + 125x4

精讲点拨

(约8分钟)

(二)、观察比较、猜测验证

1、观察比较

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)、总结规律,概括模型

1、总结规律:

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示:

师:用字母如何表示乘法分配律?

测评总结(约12分钟)

三、巩固应用,训练提升

1、请你根据乘法分配律填空

(12+40)x3=()x3+()x3

15x(40+8)=15x()+15x()

78x20+22x20=(+)x20

66x28+66x32+66x40=(+ +)x40

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错

56x(19+28)=56x19+56x28

(18+15)x26=18x15+26x15

(11x25)x4= 11x4+25x4

(45—5)x14 =45 x14 —5 x14

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)x25 39x8+39x6—4x39

4、拓展提高

你能用乘法分配律解决这道题吗?

86x101

四、说一说,今天我们研究了什么?你有什么收获

板书设计

乘法分配律

一套x4 = 4件上衣+ 4条裤子

(225+75)x4 = 225x4 + 75x4

(225+125)x4 = 225x4 + 125x4

(175+75)x4 = 175x4 + 75x4

(175+125)x4 = 175x4 + 125x4

乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

《乘法分配律》教学设计2

教学目标

1、使学生理解乘法分配律的意义、

2、掌握乘法分配律的应用、

3、通过观察、分析、比较,培养学生的分析、推理和概括能力、

教学重点

乘法分配律的意义及应用、

教学难点

乘法分配律的反应用、

教具学具准备

口算卡片、投影仪、

教学步骤

一、铺垫孕伏

1、 口算、

(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

2、 用简便方法计算、(说明根据什么简算的)

25×63×4

3、 师生比赛,看谁算得又对又快、

20×5+5×80 (1250+125)×8

让学生说明是怎样算的?

二、探究新知

1、导入:

刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容、(板书课题:乘法分配律)、

2、教学例6:

(1)出示例6:演示课件“乘法分配律”出示例6 下载

(2)引导学生观察每组的两个算式、

(3)教师提问:从上面的例子你发现了什么规律?

(4)学生明确:每组中的两个算式都可以用等号连接、

教师板书:(18+7)×6=150

18×6+7×6=150

(18+7)×6=18×6+7×6

(5)教师出示:20×(15+9)=480

20×15+20×9=480

20×(15+9)=20×15+20×9

学生分组讨论:每组中算式所表示的意义、

(6)反馈练习:按题要求,请你说出一个等式、(投影出示)

(__+__)×__=__+__×

教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

引导学生观察:等号左右两边算式的规律性

启发学生回答:首先是等号左边两个数的和同一个数相乘、

其次是等号右边两个加数分别同一个数相乘再把两个积相加、

最后是等号左右两边的两个算式相等、

3、教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变、这叫做乘法分配律、

4、反馈练习:

横线上能填几?为什么?

(32+35)×4=__×4+__×4

(62+12)×3=__×__+__×__

教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

根据练习学生从而得出: (a+b)×c=a×c+b×c

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便、

5、教学例7:演示课件“乘法分配律”出示例7 下载

(1)出示例7:102×43

启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便、

教师板书:

(2)出示9×37+9×63

引导学生观察:这类题目的结构形式是怎样的?有什么特点?

教师提问:根据乘法分配律,可以把原式改写成什么形式?

根据学生的回答教师板书:9×37+9×63

=9×(37+63)

=9×100

=900

学生讨论:这样算为什么简便?

师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和、

②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数、

③另外两个不同的因数,是两个能凑成整十、整百、整千的加数、

(3)揭示教师算得快的奥秘

上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便、现在你们会了吗?

三、巩固发展 演示课件“乘法分配律”出示练习

1、 练习十四第1题、

根据运算定律在□里填上适当的数、

(43+25)×2=□×□+□×□

8×47+8×53=□×(□+□)

3×6+6×7=□×(□+□)

8×(7+6)=8×□+□×□

2、在横线上填上适当的数、

(1)(24+8)×125=__×__+__×

(2)25×(20+4)=25×__+25×__

(3)45×9+ 55×9=(__+__) ×__

(4)8×27+73×8=8×(__+__)

其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写、

3、把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×8 24×5+24×8

(3)20×(l+15) 0×17+20×15

(4)(40+28)×5 40×5+ 28

(5)(10×125)×8 10×8+125×8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4、选择题:

(1)28×(42+29)与下面的( )相等

①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

(2)与a×8-b×8相等的式于是( )

①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

(3)与(10+8+9)×5相等的式子是( )

①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

5、练习十四第4题,投影出示、

一辆凤凰牌自行车420元,一辆永久牌自行车405元、现在各买三辆、买凤凰车和永久车一共用多少元?

四、课堂小结

今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加、希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便、

五、布置作业

练习十四第3题、

用简便方法计算下面各题、

(80+8)×25  35×37+65×37

32×(200+3) 38×29+38

板书设计

《乘法分配律》教学设计3

教学内容:

P36/例3(乘法分配律)

教学目的:

1、引导学生探究和理解乘法分配律。

2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:

乘法分配律的意义和应用。

教学难点:

乘法分配律的反应用。

教学过程:

一、铺垫孕埋伏

思考问题。

在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?

二、新授

小组讨论,尝试用不同的方法解决。

教师引导学生用多种方法解答。

学生汇报自己的解法。引导学生说明不同算法的理由。

(1)(4+2)×25

=6×25

=150(人)

4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。

(2)4×25+2×25

=100+50

=150(人)

4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。

小组合作:

(1)两组算式有什么相同点?

(2)两组算式有什么不同点?

(3)两组算式有什么联系?

汇报。

教师要根据学生的汇报,灵活地进行引导,总结出要点。

你还能举出像这样的几组算式吗?

学生举例。

根据学生举例板书。

到底我们举的例子是不是符合这样的规律呢?请学生验证。

请学生用语言表述出发现的规律。

板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

你有什么好方法帮助我们大家记住乘法分配律?

简记为:

和与一个数相乘=积相加

三、巩固练习

P36/做一做

P38/5

在练习小结中,帮助学生记忆乘法分配律。

四、小结

学生汇报自己的收获。

教师引导小结,相应完善板书。

板书设计:

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25 =100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

┆(学生举例)

(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个

数分别相乘,再相加。这叫做乘法分配律。

《乘法分配律》教学设计4

乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。

教学内容:教材第54~55页例题,完成“做一做”。

教学目标

1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

感,增强学习的兴趣和自信。

教学重、难点:

发现并理解乘法分配律。

教具准备:

多媒体课件一套。

教学过程

一、创设问题情境

谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)

二、展开探索过程

1、初步感知。

提问:仔细观察,从图中你获得了哪些信息?

学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。

提问:猜一猜,这两种方法的计算结果会怎么样?

计算验证:算一算,来证明你的猜想是正确的。

板书等式:(30+25)x4=30x4+25x4

2、类比展开。

(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6

(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?

要求6套课桌椅多少元,你准备怎么解决?

板书:(100+60)x6=100x6+60x6

3、体验感悟。

(1)类似这样的等式还有吗?你能写出第4组吗?

学生举例后,挑3组板书。

(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)

同桌互相检查刚才写的算式是否相等。

(3)交流:介绍你写成功的经验

引导:你是怎么根据左边的算式写出右边的算式的?

4、提示规律。

(1)提问:像这样的等式能写完吗?

(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。

板书:(a+b)xc=axc+bxc

(3)板书:乘法分配律

让学生用自己的语言说说这个字母式子表示什么,师小结。

三、巩固内化

1、在□里填上合适的数,在○里填上运算符号。

(42+35)×2=42×□+35×□

27×12+43×12=(27+□)×□

15×26+15×14=□○(□○□)

学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。

出示:72x(30+6)= 齐说答案。

出示:(25-12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结

2、横着看,在得数相同的两个算式后面画“√”。

(48+52)×13 48×13+52×13 □

40×5+2×5 5×(40+2) □

75×(19+1) 75×19+75 □

40×50+50×90 40×(50+90) □

27×(16+30) 27×16+30 □

独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?

出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。

四、总结回顾

通过今天这节课的学习,你有什么收获?

五、布置作业

1、必做题:想想做做第5题。

2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。

《乘法分配律》教学设计5

教学内容分析:

乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

教学目标:

知识与能力:

1、在探索的过程中,发现乘法分配律,并能用字母表示。

2、会用乘法分配律进行一些简便计算。

过程与方法:

1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

情感、态度与价值观:

1、在这些学习活动中,使学生感受到他们的身边处处有数学。

2、增加学生之间的了解、同时体会到小伙伴合作的重要。

3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

教学过程:

一、创设情境,激趣导入。

1、出示:

125×8=25×9×4=18×25×4=

125×16=75+25=89×100=

教师请个别学生口算并说出部分题的口算依据及应用的定律。

2、再出示:119×56+119×44=

师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?

二、引导探究,发现规律。

1、出示课本插图

师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?

生:我看到两个工人叔叔在贴瓷砖。

生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。

生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。

师:你真细心。大家能根据获得的信息提一个数学问题吗?

学生提问题,教师出示问题:一共贴了多少块瓷砖?

2、估计

师:谁能估计工人叔叔大约贴了多少块瓷砖?

学生试着估计。

3、列式解答

师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。

学生用自己喜欢的方法计算,教师巡视。

师:谁来向大家介绍一下自己的算法?

生:6×9+4×9(板书)

=54+36

=90(块)

师:这边的6×9和4×9分别是算什么?

生:分别算出正面和侧面贴的块数。

师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?

生:我是这样列的,(6+4)×9(板书)

=10×9

=90(块)

师:你能说说为什么这样列式吗?

生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。

师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?

生:计算方法不一样,结果却是一样的。

师:所以这两个式子我们可以用一个什么样的数学符号连接起来?

生:等于号。

教师板书。

4、观察算式的特点

师:观察等号两边的式子,它们有什么特点呢?

生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边

的算式是这两个加数分别与一个数相乘,再把所得的积相加。

生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。

师:是这样吗?你们能再举一些类似的例子吗?

5、举例验证

让学生根据算式特征,再举一些类似的例子。

如:(40+4)×25和40×25+4×25

63×64+63×36和63×(64+36)

讨论交流:

(1)交流学生的举例是否符合要求:

(2)交流不同算式的共同特点;

(3)还有什么发现?(简便计算)

师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。

6、字母表示。

师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。

7、揭示课题。

三、应用规律,解决问题。

课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?

1、(80+4)×25

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

(3)鼓励学生独自计算。

2、34×72+34×28

(1)呈现题目。

(2)指导观察算式特点,看是否符合要求。

(3)简便计算过程,并得出结果。

3、让生观察:36×3

=30×3+6×3

=90+18

=108

师:你能说说这样计算的道理吗?

生独自思考,小组讨论,全班交流。

四、总结。

师:说说这节课你有什么收获?

师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。

22 2409739
");