圆的周长教学设计【优秀4篇】

网友 分享 时间:

【路引】由阿拉题库网美丽的网友为您整理分享的“圆的周长教学设计【优秀4篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!

圆的周长教学设计【第一篇】

教学目的

1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。

教学重点、难点

推导圆周长计算公式,理解圆周率的意义。

教具准备

圆片、铁圈、绳子、直尺。

教学过程

一、把准认知冲突,激发学习愿望。

1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)

2、化曲为直,测量周长。

(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

讨论:

方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

反思教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。

二、经历探究全程,验证猜想发现。

㈠圆的周长与直径有关系。

1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

3、总结:圆的直径的长短,决定了圆周长的长短。

㈡圆的周长与直径的倍数关系。

1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)

反思合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。

三、感受数学文化,激发情感体验。

1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。

2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在和之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

3、介绍计算机计算圆周率的情况。

4、教学圆周率:π≈。

反思数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。

四、刷新应用能力,总结巩固新知。

1、请你用自已的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

2、尝试练习:一辆自行车车轮的直径是米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)

3、明辨是非:

(1)圆的周长和直径的比的比值叫做圆周率。( )

(2)大圆的圆周率大于小圆的圆周率。( )

(3)π的值等于。( )

(4)半径是10厘米的圆,它的周长是厘米。( )

4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。

反思荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住×1、×2、……×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。

《圆的周长》数学教案【第二篇】

篇1:六年级圆的周长数学教案

教学目标

1、 让学生知道什么是圆的周长。

2、 理解并掌握圆周率的意义和近似值。

3、 初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、 培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。

5、 通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

6、 培养学生的观察、比较、分析、综合及动手操作能力。

教学重点

理解和掌握圆的周长的计算公式。

教学难点

对圆周率的认识。

教学准备

1、 学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、 教师准备图片。

教学过程

一、激情导入

1、 动物王国正在举行动物运动会可热闹了,想不想去看一看?

2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

二、探究新知

(一) 复习正方形的周长,猜想圆的周长可能和什么有关系。

1、 由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

2、 (生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

3、 圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)

4、 猜想:你觉得圆的周长可能和什么有关系?

(二) 测量验证

1、 教师提问:你能不能想出一个好办法来测量它的周长呢?

① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。

②观察数据,对比发现。

提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

3、 比较数据,揭示关系

正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

(三) 介绍圆周率

1、 师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

2、 圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

3、 小结:早在1500年前,祖冲之把圆周率算到了和之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母 “∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

(四) 推导公式

1、 到现在,你会计算圆的周长吗?怎样算?

2、 如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

3、 知道半径,能求圆的周长吗?周长是它半径的多少倍?

三、运用公式解决问题

1、 一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

2、 花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

3、 钟面直径40厘米,钟面的周长是多少厘米?

4、 钟面分针长10厘米,它旋转一周针尖走过多少厘米?

5、 喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

四、课堂小结

通过这节课的学习你想和大家说点什么?

这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。(作者:山东省临清市唐园镇中心小学 张延平)

篇2:苏教版数学六年级上册教案 《圆的周长》教案(一)

教学目标

1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆周率。推导出圆的周长公式,并会运用公式进行简单的计算。

2.初步渗透转化思想,教给学生一些学习方法。培养学生的动手动脑能力。

3.对学生进行爱国主义教育,培养学生民族自豪感。

教学重点和难点

学生通过自己动手找出圆的周长与直径的倍数关系。

教学过程设计

(一)复习导入

出示图(投影)

两名运动员分别沿着边长为100米的正方形和直径为100米的圆的路线骑车比赛。问:

1.沿着正方形路线跑实际就是沿着正方形的什么跑?正方形的周长指的是什么?

2.正方形的周长怎么求?用字母怎样表示?

板书:C=4a

3.正方形的周长与谁有关?有什么关系?

生:正方形的周长与边长有关。周长是边长的4倍。

4.沿着圆形的路线跑实际上是沿着圆的什么跑?

质疑:如果正方形的边长是100米,圆的直径是100米,两名运动员同时、同速从一点出发,谁先回到原出发的一点呢?

生:同时到。或跑圆形的先回来……

这只是一种猜测,到底什么是圆的周长,怎样求圆的周长?这节课我们就一起来研究这一新的知识。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)

(二)教学新课

1.认识圆的周长。

(1)学生拿出学具中最大的圆用手摸一摸圆的周长。指一名到前面摸一摸。注意起点、终点。

(2)同桌互相说一说:什么是圆的周长?

生:围成圆的曲线的长叫做圆的周长。

2.化曲为直,创设情景,引发求知欲。

(1)我们想知道你课桌的周长怎么办?

生:用直尺量出课桌的长和宽。

(2)圆的周长用直尺测量方便吗?为什么?

生:不方便,因为直尺是直的,而圆的周长是曲线围成的。

(3)用什么办法化曲为直测量出圆的周长呢?学生讨论。谁来说一说?

①用围的方法。指名演示。(板书:围)

问:要注意什么?

②用滚的方法。指名演示。(板书:滚)

问:要注意什么?

生:在圆上先作了记号,沿直尺滚动一周。

师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是所有圆的周长都可以用这两种方法解决吗?

(4)谁能用围的方法量一量黑板上圆的周长?

两名学生量。说一说自己的感觉。

(5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。

问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明围、滚的办法不是什么样的圆都试用。因此我们需要探讨出一种计算圆的周长的方法。

3.找关系,推导公式,探求新知(重点和难点)。

(1)正方形的周长与边长有关。周长是边长的4倍。圆的周长与谁有关呢?

出示两个大小不同的圆。问:①哪个圆的直径长,哪个圆的直径短?拉开周长,你发现了什么?②圆的周长与什么有关?(与直径有关。)

板书:圆的周长 直径

(2)是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现规律,能发现什么规律。

①拿出你们的学具圆,汇报一下,直径分别是几厘米?(1厘米、3厘米、5厘米、10厘米。)

②同学们动手利用手中学具用围或滚的方法量一量圆的周长,并算一算,找出周长与直径的关系。同桌合作测量,看哪一组量得准,算得快。结果填在表格中。

生:直径不同,周长也不同,但周长总是直径的三倍多一些。

③电脑或实物验证。

问:是所有的圆的周长都是直径的3倍多一些吗?

电脑出示2个大小不等的圆,让学生边看边数一数。

师:刚才是老师给你的圆,现在谁愿意自己在电脑上任选一个圆,大小由你决定。

指名填到黑板上。

互相说一说:你发现了什么规律?

学生自己选出一个圆,看一看这个圆的周长是否是直径的3倍多一些。

师:圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。为什么我们算的不一样呢?因为我们的测量有误差。我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。

补充板书:÷圆周率π固定

师:很早以前,人们就开始研究圆周率这个问题了。你知道最早发现圆周率的是谁吗?

放录音:大约20xx年前,我国的古代数学着作《周髀算经》中就有“周三径一”的说法。意思是说圆的周长是直径的3倍。

大约1500年前,我国伟大的数学家和天文学家祖冲之,就精确地计算出圆周率应在~之间,成为世界上第一个把圆周率值的计算精确到6位小数的人。他的这项伟大成果比国外数学家至少要早一千多年。生为中国人,应为之自豪。

板书:~之间

后来人们发现π是一个无限不循环小数。

板书:无限不循环

在计算时,只取它的近似值,一般保留两位小数,即π≈。

圆的周长总是直径的π倍,已知圆的直径怎样求圆的周长呢?同桌互相说一说。

用字母怎样表示?

板书:C=πd

已知半径怎么求圆的周长呢?

板书:C=2πr

问:知道什么条件就可以计算圆的周长?

4.解决实际问题。

例1 一张圆桌面的直径是米。这张圆桌面的周长是多少米?(得数保留两位小数)

(1)读题。已知什么条件?要求什么问题?

(2)指名列式。

×

板书:= (先写准确值)

≈(米)

答:这张圆桌面的周长是米。

练一练 第112页的“做一做”。学生做在本上,投影订正。

(三)巩固练习

1.计算复习准备中的骑车比赛一题。回答谁先返回原点。

C圆 ×100=314(米)

C正 100×4=400(米)

因此沿圆周骑车的运动员先返回原点。

不用计算也可知。因为圆的周长是直径(100)的π倍,而正方形的周长是边长(100)的4倍。因此,绕圆周骑车的人先回到原点。

2.老师用绳甩小球。算一算小球转动的圆的周长。知道什么条件就可以了?(绳长5分米)学生算一算。

(四)课堂总结

这节课我们学习了哪些知识?还有什么问题。

(五)布置作业

课本第113页第 1,2(1),3(1),4,5,6题。

课堂教学设计说明

1.主要发挥学生的主体作用。从始至终让学生动手量、算;动脑发现规律;动口说出自己的发现。充分发挥学生的主动性、积极性,培养学生独立思考问题的能力及独立获取知识的能力。

2.精心设计每个环节间的导语,用质疑的方法引入每部分内容,使老师的语言自然,流畅。通过质疑也可抓住学生的心,使学生们一步步地发现问题,解决问题。

3.注意电教手段的合理应用,这样既可画龙点睛,又可激发学生的兴趣,提高课堂效率。

小学数学六年级教案——"圆的周长"教学设计与评析

教学内容:人教版九年义务教育六年制小学数学第十一册第110一113页"圆的周长"。

教学目标:1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。

2、培养学生的观察、比较、分析、综合、和动手操作能力。

3、初步学会透过现象到看本质的辩证思维方法。

4、结合圆周率的学习,对学生进行爱国主义教育。

[评析:教学目标的拟订,从知识到能力、到思想方法、到爱国教育,立体丰满,折射出设计者教育观念的现代、育人意识的高度自觉]

教学过程:

一、创设情境,导入新课

1、播放课件。

星期天,米老鼠和唐老鸭在草地上跑步,米老鼠沿着正方形路线跑,唐老鸭沿着圆形路线跑。

2、揭示课题。

(1)要求米老鼠所跑的路线,实际上就是求这个正方形的什么?

要知道这个正方形的周长,只要量出它的什么就可以了?能说出

你的依据吗?(突出:正方形的周长与它的边长有关)

(2)要求唐老鸭所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。

[评析:学生熟悉的可爱的米老鼠、唐老鸭的课件播放,既创设了融融的教学情境场,演示了周长的概念,较好地激发了认知冲突,又为后继教学埋下了伏笔。一举多得,既有承继,又有创新,难能可贵。]

3、引出圆周长的概念。

围成圆的曲线的长叫做圆的周长。

二、引导探索,展开新课

(一)测量圆的周长

如果我们用直尺直接测量这个圆的周长(教师演示),你觉得怎么样?你能不能想出一个好办法来测量它的周长呢?

1、如果学生说:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长,则师生合作演示量教具圆的周长。

然后各组分工同桌合作。请第一、二组的同学测量直径为2厘米圆片的周长,第三、四组的同学测量直径3厘米圆片的周长。并把结果记录在110页的表格中。

追问:如果要知道那个圆形草坪的周长(指唐老鸭跑的路线),也可以让它在直尺上滚着来量吗?

2、如果学生说:用绳子在圆上绕一周,再测出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作,第一、二组的同学测量直径为4厘米圆片的周长,第三、四组的同学测量直径为5厘米圆片的周长,并将结果记录在第110页的表格中。

3、教师甩动绳系小球,形成一个圆。

提问:小球的运动形成一个一一圆。你能用刚才的方法测量出圆的周长吗?

4、小结:看来,用滚动、绳绕的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

[评析:用直尺量→滚动法量→绳绕法量→没法量,既留给学生发挥的时空,又不断制造矛盾,"逼"着学生探求新知。]

(二)探讨圆的周长与直径的关系

1、圆的周长与什么有关。

(1)启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关呢?

(2)出示三个大小不同的圆:

组织学生观察比较,得出结论:圆的周长与它的直径有关。

2、圆的周长与直径有什么关系。

(1)正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

(2)演示周长与直径的关系:用一根红线绕圆面一周剪下,拉直和直径比较,发现这段长度是直径的3倍多一些。

(3)学生自己验证:用刚才测得的第110页表中的数据计算它们的比值,依次一组计算一个。

(4)观察数据。

第一个圆片: ××算出它的周长与直径的比值是,也有同学算出的是、。在实验操作中允许存在这样的误差。不管是、,都可以说,它的周长是直径的3倍多一些。

第二个圆片:它的周长是直径的3倍多一些。

第三、四个圆片:它的周长还是直径的3倍多一此。

(5)得出结论

圆的周长总是它直径的3倍多一些。板书:3倍多一些。

[评析:这一环节融猜想、讨论、实验、计算、观察、归纳和概括于一体,让学生动脑、动手、动眼、动口,多种感官参与学习过程,自主发现圆周长与直径的倍数关系,体现了设计者较为先进的教学观和师生观,以及较强的选择、组合、优化教法的能力。由"是……"→

"也是……"→"还是……",最后概括出"总是……",反映出教者较强的数学思想方法渗透能力和较为精湛的语言功底。]

3、认识圆周率。

(1)揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

指导学生读写π,每人在本子上写3个π,同桌比比,看谁写得好。

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长:直径=π

(2)指导阅读第111页方框中的文字,了解让中国人引以为自豪的历史。在学生汇报"看书后知道了些什么"时,相机板书: π=3,1415926……≈

4、推导圆的周长计算公式。

(l)提问:已知一个圆的直径,该怎样计算它的周长?板书:c =πd

建议学生从第110页表格中任意挑一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?

[评析:让学生从表格中挑一个直径计算周长,再对照验证,这既是验证刚发现的圆周长计算公式,又是初步运用、巩固刚发现的公式,更是让学生经历科学发现的完整过程。]

(2)提问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:c=2πr

提问:甩小球形成的圆的周长你会求吗?

[评析:此环节与上一环节有异曲同工之妙!既是巩固运用,又是前有设问,后有解答,让学生体验自我成就感。]

(3)小结:要求圆的周长,一般需要知道它的直径或半径。知道圆的直径,怎样来计算周长?知道圆的半径,怎样来计算周长?

三、初步运用,巩固新知

1、完成第113页第1题的(1)(3)两小题。

2、下面的说法对吗?!

(1)圆的周长是它直径的π倍。 ( )

(2)大圆的圆周率小于小圆的圆周率。( )l

3、出示例1

(1)在学生读题后,提问:求这张圆桌面的周长是多少米?实际上就是求什么?

(2)学生尝试练习,反馈评价。

(3)提问:如果告诉你的不是这张圆桌的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?

4、完成第112页中间的练一练。l

5、看书质疑。l

[评析:练习设计目的明确,层次清晰,可以有效巩固新知。例1的直径改半径,独具匠心,既练习了求周长的另一种情况,又培养了学生思维的深刻性,而费时不多。]

四、照应启思,总结新课

1、组织学生说说收获。!

同学们从四个圆片的周长、直径的变化中(板书:变),看出了圆周率始终不变(板书:不变)。如果我们长期坚持这样从变化中看出不变,你就会变得越来越聪。

[评析:"变"与"不变"的板书,看似简单明了,其实是设计者苦心经营的。这一环节的组织,使辩证思维方法的培育从高空落到实地,促成了第3条教学目标的落实到位。]

2、照应开头。

我们再来看看米老鼠、唐老鸭跑步的路线,如果他的都跑了一圈,你能判断出谁跑的路程多吗?为什么?

3、课后思考。

小学六年级数学教案——[圆的周长]教学设计

教学内容:九年义务教育六年制小学数学第十一册第110~113页“圆的周长”。

教学目标:

1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

3.初步学会透过现象看本质的辨证思想方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

教学重点:正确计算圆的周长。

教学难点:理解圆周率的意义,推导圆周长的计算公式。

教具准备:多媒体课件三套、系绳的小球。

学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。

教学过程:

一、以旧引新,导入新课

1.复习长方形、正方形的周长。

我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?

2.揭示圆的周长。

(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。

(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?

二、动手操作,引导探索

1.测量圆周长的方法。

(1)提问:你知道了什么是圆的周长,还想知道什么?

我们先研究怎样测量圆的周长,请同学们分组讨论一下。

把你们讨论的结果向大家汇报一下?学生边回答边演示。

(2)教师甩动绳子系的小球,形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?

2.认识圆周率。

(1)探讨圆的周长与直径的关系。

①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。

请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?

课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)

提问:你们是怎么看出来的圆周长跟直径有关系?

②学生测量圆周长,并计算周长和直径的比值。

圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。

生测量、计算、填表。在黑板上出示一组结果。

请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)

这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)

(2)揭示圆周率的概念。

通过以上的观察你发现了什么?

任何圆的周长总是直径的3倍多一些。

那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)

(3)了解让中国人引以为自豪的圆周率的历史。

关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?

很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个()无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=……

3.推导圆周长的计算公式。

根据刚才的探索,你能总结出圆周长的计算公式吗?

篇3:小学六年级数学教案——[圆的周长]教学设想

教学内容:义教六年制小学数学第十一册第110-112页例1。

教学目标:

1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

教学重难点:圆周率意义的理解和圆周长公式的推导。

教学设想:新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

教学具准备:多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

教学过程:

一、创设情境,提出问题

1、创设情境。

这节课,老师要和同学一起探讨一个有趣的数学问题。

媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

2、迁移类推。

引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

(1)要求唐老鸭所跑的路程实际就是求什么?

(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

3、提出问题。

看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?

[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]

二、自主参与,探究新知。

1、实际感知圆的周长。

让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

2、明确圆周长的意义。

引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

(1)圆的周长是一条什么线?

(2)这条曲线的长就是什么的长?

(3)什么叫做圆的周长?

学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)

篇4:小学六年级数学教案——“圆的周长”教学设想

教学内容:义教六年制小学数学第十一册第110-112页例1。

教学目标:

1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

教学重难点:圆周率意义的理解和圆周长公式的推导。

教学设想:

新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。

圆的周长教学设计【第三篇】

教具、学具准备:

多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。

教学过程:

一、 认识圆的周长

1.情境导入。

师:同学们,看过《米老鼠和唐老鸭》吗?

师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?

(生齐鼓掌!)

师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)

2.迁移类推

师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?

(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?

(板书课题:圆的周长)

(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。

师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

(完成板书:围成圆的曲线的长叫做圆的周长)

师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

3.实际感知

师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

二.测量圆的周长

1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

2、小组汇报:(预设)

(1)师:哪个小组愿意来汇报?

方法一:用线绕

师:谁来与老师配合绕给同学们看看?

(师生合作用绕线的方法去测量圆周长)

师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)

师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)

(2)师:除此以外,还有别的方法吗?

方法二:把圆放在直尺上滚动一周。

师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)

(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

师:真的吗?谁敢来试试。

指名一生上台测量黑板上的圆。可能用线绕。

师:有什么感觉?(不方便!)

师:那你可以把它搬下来滚动呀!

这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。

三、引导学生发现圆的周长和直径之间的关系

1.猜测

师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)

2.验证

师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

师:你感觉到了吗?

(圆的直径越长,周长越长;圆的直径越短,周长越短。)

师:这就说明圆的周长肯定与圆的什么有关系?

(圆的周长与直径有关系。)

师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。

(生实际测量、计算、填表)

3.展示汇报

师:哪一个小组愿意来汇报你们的数据。

师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)

师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?

4.揭示规律

师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!

屏幕出示图3:

师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?

(圆的周长总是它直径的3倍多一些)

师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π" (读pài)表示。

5.介绍小知识。

师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)

五、揭示圆的周长计算公式

师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?

(测量出它的直径)

师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)

师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)

(板书:C=πd)

师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?

(板书:C=2πr)

练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?

学生独立计算。汇报:唐老鸭跑的路程更远。

六、应用圆周长计算公式,解决简单的实际问题。

1、 教学例题:一张圆桌面的直径是米。这张圆桌面的周长是多少米?(得数保留两位小数)

(课件出示)

(1)学生独立完成,汇报,弄清列式的依据。

(2)小结:已知直径求周长可直接套用公式。

2.通过媒体演示指导学生完成"做一做"作业。

饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?

小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.

五、总结,质疑,看书内化。

师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。

六、巩固练习。

1.判断。

(1)圆周率就是圆的周长和直径的比值。

(2)π=。

(3)半径的长短决定圆周长的大小。

(4)同圆中,周长是直径的π倍。

2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?

3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过米长的钢丝,车轮要转动多少周?

4.求半圆的周长:d=6厘米(图略)

六年级数学教案《圆的周长》【第四篇】

1、基础练习:计算下面各图形的周长和面积。只列式,不计算。(P128图略)

2、火眼金睛。(判断对错)

①一个三角形,底6分米,高5分米,它的面积是30平方分米。()

②一个边长5米的正方形,它的面积是20平方米。()

③一个圆,直径是2厘米,它的面积是平方厘米。()

3、对号入座。

①边长是4米的正方形,()

A周长面积;B周长面积;C周长=面积;D周长和面积无法比较

②一个平行四边形和一个三角形等底等高,已知平行四边形的面积是25平方厘米,那么三角形面积是()平方厘米。

A、5B、、25D、50

4、走进生活。

①假如你家里要在一块边长2米的正方形木板上,剧一个最大的圆用来做饭桌面,请你算出这个圆面的面积并说出理由。

②设计比演,时间3分钟。现在请你来当小设计师,发挥你的设计才能,运用这几种平面图形对学校正门前的空地的布局进行重新规划设计,我们看看谁的设想既美观又合理。(注:设计时可以把图形进行组合)

(1)小组在白纸上进行设计。汇报:用什么图形设计出了什么?

(2)你准备怎样计算你设计中这些图形的周长和面积呢?

七、全课小结。通过同学们的认真学习,大胆创新设计,我相信你们当中有很多同学会成为杰出的设计师。

八、作业。把你的设计完成,并写出每个图形的周长和面积的计算。

九、板书设计:(电脑演示)

平面图形的周长和面积

贴卡片ac=4a

s=a2hbc=a+b+h

aas=ah2

b

ac=2(a+b)

c=2(a+b)s=ahac=a+b+c+d

s=abcd

bs=(a+b)h2

c=2лr;s=лr2

(联系转化应用)

22 502502
");