数学《平面图形的周长和面积》教案【最新4篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“数学《平面图形的周长和面积》教案【最新4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《平面图形的周长和面积的总复习》的课前反思【第一篇】

《平面图形的周长和面积的总复习》的课前反思

总复习课落实教学的有效性显得尤其重要。通过这节课的复习,不仅要让学生回忆平面图形周长、面积的算法,还要让学生梳理知识,形成知识网络。

本节课设计了几个教学环节。第一个环节联系实际引入,学生体会了生活中的周长和面积,提高学生的学习兴趣,体会到生活和数学的联系。第二个环节复习周长和面积的单位和进率,并适当补充课外知识。第三环节,学生以小组讨论的形式比较两组图形的周长和面积后,进一步体会了周长和面积的区别。第四个环节简单复习近平面图形的周长。对有周长计算公式的图形,复习周长的计算公式,重点复习了圆的周长公式的推导过程。没有周长计算公式的图形,也要求说出周长的求法。在这一环节中学生加深了对周长意义的理解。第五个环节复习近平面图形的面积。学生回忆了六个图形的面积计算公式和计算公式的推导过程。第六环节,初步练习,并联系引入环节进行面积和周长的实际应用的练习。最后完成书上练习。

《平面图形周长和面积的与复习》的教学反思【第二篇】

关于《平面图形周长和面积的整理与复习》的教学反思

我接到上课任务,并看了教材后,自己心里很没有底,不知道该怎样上复习课。因为复习课不像新授课,有一个从无到有的过程,不像新授课能体现一个学生探究的过程。而复习课都是旧知,而且知识点多,要进行系统整理,要进行一定量的练习,如何在一节课中完成这些,最主要的是如何体现导、学、议、练的理念,如何体现学生的主体地位,如何做到让学生自主整理,这的确有难度。为此特地在网上找了一些资料,看如何上复习课。最后我的理解是复习课至少要到达以下几个目的:一是回顾各知识点、进行查漏补缺;二是对知识点进行整理形成系统的知识体系,加深对知识的理解,提高综合运用知识的能力;三是培养学生自主整理、构建知识体系的能力。我认为的难点就在第三点,毕竟学生自主整理建构的能力是比较欠缺的。平面图形的面积的总复习是小学数学第十册总复习单元中内容,将小学数学中的平面图形面积集中进行复习。这是几何初步知识中最基本的计算。平面图形的面积公式的推导过程教学是分册、分散出现,由于受遗忘规律的制约,很多成了沉默的知识,要激活这些知识,就需要再次的认知。因此,通过复习,系统梳理知识,弥补学习缺陷,促进认知结构的完善,使全班学生的学习水平达到一个新的高度,这是本节课我想达到的教学目标。

经过集体备课后,整个课的流程大体定下来了。首先是复习近平面图形周长和面积的意义,然后是回顾各公式的推导过程,再就是进行整理,形成知识网络,最后是综合运用练习。进行整理、构建知识体系的形式就是用卡片摆。因为用卡片摆可以随时进行调整,摆的位置本身就能说明知识之间的逻辑关系,而且用的时间相对会少一些,如果让学生在纸上画一个结构图出来,对学生而言有难度,一次不一定就能画对,而且费时。当然学生也不能一次性就摆对,但教师可以适合点拨,学生随时进行调整。如:学生摆对的时候,教师就可以问为什么这样摆?学生摆错的时候,教师就可以问图形的面积公式是怎样推导的,那应该摆在什么地方等等。总之要将摆的位置与面积公式的推导结合起来,将学生的自主整理与教师的点拨结合起来。这个过程是师生动态交互的过程。

在第一次试讲的时候就发现一个问题,时间不够,最后练习的量比较少。在回顾周长、面积公式的推导过程和整理知识体系时花了较多的时间,学生在回答公式推导过程时不善于完整、准确的表达,在求周长、面积时计算花了一些时间。于是进行了以下改动,一是面积公式的推导用课件进行演示,学生的回答配合课件直观的演示便于学生回顾和理解公式;二是做一做的练习只列式不计算。三是考虑把对公式推导过程的复习与知识网络结构的整理两个步骤合为一步,这样可以节约一些时间,但对教师的'要求就比较高了,对学生也更有难度了。

后面的试讲就是先回顾面积计算公式的推导过程,在进行整合构建,效果比综合在一起就好多了。在回顾面积计算公式的推导过程是要理解公式中每一个字母的意义,而在建构知识结构时只需说用什么推导出什么就可以了。对计算公式的理解是建构知识结构的基础。回顾各公式的推导过程就像一个机器的某一部分,而建构知识结构就像把各个部分组装起来一样。我们得把各部分做好后才能进行组装。经过历次磨课,我体会到:复习课并不是旧知的简单回顾,它有不同于新授课的目标,复习课一样要立足于学生,一样是一个动态生成的过程。

整堂课上下来,我感觉到这节课仍然有很多问题:

①教师的语速太快,有的学生思维跟不上。

②教学环节控制不好,对于整体环节的把握有待改进。不能关注全体学生,控制课堂的能力有待改进,教学经验不足。

③老师的话说得太多。放不开让学生自主。总是担心学生说得不够全面。放不开手,所以还是显得有些罗嗦。教师的基本功不扎实,有些话不严谨或不敢说

以上都是需要我注意改正的地方,以求在未来的教学中提高自我,完善自我。

六年级数学《平面组合图形的面积》教案【第三篇】

教学内容:小学数学第十二册第126页

教学目标:

1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。

2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。

教学重点:进一步培养学生学会观察。

教学难点:进一步学会找隐蔽条件。

教学过程:

一、复习基本知识

1、我们已学过哪些平面图形?(请生回答,并出示图形)。

2、请生回答这些平面图形的面积怎样计算?用字母公式表示。

3、基本练习:求各图形面积。(单位:厘米)开火车

4、导入:今天我们继续复习图形的面积――组合图形的面积(板书)

二、变化练习

1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)

2、学生汇报:(边出示,边板书)

(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)

(2)正方形面积-角形面积列式:4×4-4×4÷2

(3)半圆的面积+梯形面积列式:×22÷2+(3+5)×4÷2

(4)梯形面积-半圆的面积列式:(3+5)×4÷2-×22÷2

(5)长方形面积+半圆的`面积列式:×22÷2+4×2

(6)长方形面积-半圆的面积列式:4×2-×22÷2

3、小结,并回答以下问题:

(1)由几个简单图形组成的图形叫做。

(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?

(3)求组合图形的面积时,解答的步骤是什么?关键是什么?

三、强化练习

1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)

6(1)先让学生独立思考,然后再请生回答。

(2)你有几种解法?并在大屏幕出示。

9

2、求下列各个阴影部分的面积。(单位:厘米)

(1)(2)

6

6d=6

A:先让学生做在自己的本子上。

B:并让学生说一说你是怎样解答的?

C:核对,并在大屏幕演示。

D:小结:如果组合图形不能直接拆成几个简单图形,那该怎么办呢?

3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)

先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。

4、小结:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。

四、发散练习

如图:两个正方形摆放在一起,(大正方形边长为8厘米,小正方形边长为5厘米),图中有7个点,任意连接其中3个点,可以形成一个三角形,求三角形的面积?

(5分钟内看谁做得最多,方法最巧妙)

五、板书设计

平面图形的面积复习【第四篇】

一、查漏补缺更到位

查漏补缺是复习的重要内容,以前我总是查阅很多资料,找了各种各样练习题让学生练习,生怕有些内容没复习到,考试时学生不会做。这样的题海复习,学生学得苦,教师教得累。而本节课中,学生在找联系的过程中,自然地生成了许多新授课没有讲到过的知识,特别是平行四边形转化成长方形时,有学生认为通过割补的方法可以转化成长方形,有学生认为可以利用平行四边形容易变形的特性通过拉动转化成长方形,通过学生的自主讨论,发现用割补法,平行四边形与长方形的面积是不变的,而通过拉动的方法,平行四边形与长方形的面积是变化的。我想这不就是试卷经常要出现的题吗?以前我总是把这些题目自己找来让学生练习,效果又不太好,而今天学生自己通过找联系,自然地生成了这些题目,而且在对比中进行了练习,更是达到了良好的效果。

二、知识梳理更自主

知识梳理就是将学生学过的知识进行整理,使之条理化,系统化,网络化。它也是一堂复习课的核心环节。传统的教学中,梳理知识总是被教师所代替,教师通过自己的“理”代替了学生的“理”,这样学生头脑中的知识网络是千篇 一律的。而本节课,通过学生自己找联系,通过回忆、再现、交流、分类等各种活动,沟通了知识之间的内在联系,这样构建的知识体系不再是教师牵着走,更具有主动性。特别是最后当教师问到这么多的图形中,你认为哪个图形是最基本的图形时,学生都说出了自己的想法,而且说得头头是道,可见每个学生头脑中的知识网络又是不一样的。

理练结合更紧密

“理”与“练”是复习课的主要环节,传统的教学总是把“理”与“练”分两段式进行教学,本节课中“理”与“练”紧密地结合在一起了。比如当学生交流三角形与平行四边形的。联系时,我就趁机问学生:告诉你平行四边形的底是25厘米,高是15厘米,那么你觉得可以求出什么?有学生说可以求出平行四边形的面积,有学生说还可以求出与它同底等高的三角形的面积,有学生提出可以求出长方形的面积……这样使练习与整理有机地结合在一起了。以前学生在计算三角形的面积时总是要忘记除以2,而这样的练习无疑使学生加深了印象,增强了对比,突破了重点与难点。

总之,复习课应该抛弃传统的题海战术的复习方式,应该用系统论的观点,站在一定的高度,把知识串联起来,沟通知识之间的联系,从而以点带面,这样才能更利于学生的发展。

四年级《平面图形的面积计算复习》教学反思的全部内容由数学网收集整理,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,如对提供的教材内容有兴趣,欢迎继续关注。

22 1527970
");