冶金工业论文(精编5篇)
【路引】由阿拉题库网美丽的网友为您整理分享的“冶金工业论文(精编5篇)”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
冶金行业论文1
[关键词]冶金;自动化;仪表;发展;工业
中图分类号: 文献标识码:A 文章编号:1009-914X(2015)05-0387-01
在中国经济迅速发展的今天,来自国内外的各个企业对中国冶金企业的冲击和竞争越来越激烈,如何在这样复杂的国际环境和国内环境中争得一席之地,怎样提高自身企业的冶金水平,未来冶金行业的发展方向在哪里等等,这些问题都已经迫在眉睫。作为冶金技术中占据举足轻重位置的自动化技术已经成为各大企业竞相角逐的重要领域,冶金行业的未来也必须依靠冶金行业技术创新能力的增强,依靠冶金自动化的发展进步。故而自控仪表的发展和在冶金工业中的使用,也体现了冶金技术水平的高低,为冶金行业的发展注入了动力。本文冶金论文就自控仪表在冶金工业的重要性进行了详细的讨论叙述。
一、目前冶金行业中的自控仪表的应用程度
自古我过在冶金领域就具有领先地位,然而由于我国工业革命时间较晚,加之断代时间长,更重要的是现代冶金工业中自动化的广泛应用,使得我国的冶金工业,与之国外企业竞争力逐年下降的趋势。我国自控仪表在冶金工业中已经广泛使用,然而在自控仪表的使用中依然存在着一些问题,如操作人员同时监控几个区域,导致工作过于繁重,维修人员难以维修国外生产的自控仪表等等,现将存在的主要问题做如下陈述:
(一)是发展自主创新的自控仪表有所限制
首先,在自控设计中,我们经常由于自控仪表本身存在的一些问题,给仪表的寻永和自控系统的设计都带来了重重的麻烦,虽然这些问题都是可以解决的,但是由于这些问题的存在,在时机的应用中给生产带来了一些不安全的因素,而且阻碍了很多自控仪表的应用。由于,自控仪表的设计和制造,需要企业有一定的投入,尤其在研发方面投入较产出高,而且收益不明显,研发时间较长,研发人才缺乏等等原因,再加之国外水平较高,技术较成熟,不需要企业大量投入,只需引进技术,培训人力。所以国内企业大多选择国外的自控仪表,对中小企业来说,选择国外企业的自控仪表对企业的快速发展壮大有这积极的意义,然而在企业的长期展望和大型企业增强国际竞争力等方面来说,自主创新是必然道路,依靠国外企业的时代必然要结束。
(二)是自控仪表改革中的问题
如上所述,由于我国的工业革命时间较晚,加之我国有大量的廉价劳动力,这就对我国冶金业企业对自控仪表的改革形成了阻碍。自控仪表在实现全自动操作,减少人工操作环节等方面有着重要的地位,然而改革前期,对企业而言,更换自控仪表等,需要大量资金投入,而当时的政企不分家的中国冶金企业来说,改革是需要层层审批,专家反复论证,政府决策者支持的。而对企业工人而言,自控仪表的使用必然导致大量的人力被机械所代替,工人面临下岗的危险。所以,企业和企业工人在客观的和主观的因素影响下都部愿意进行改革,就导致自控仪表的改革步履艰难现象。
(三)是企业对自控仪表的重视程度不够
在中国还未加入WTO之前,中国冶金企业可以说自视甚高,国内竞争压力校,国内大型的冶金企业基本为国企,故而,企业领导者对企业的发展和行业的创新没有足够的认识,对自控仪表的使用只能是在国外参观而实际工作中并不应用。这导致了中国冶金工业的长期不进步,和国外企业的竞争力逐年拉大。
(四)是在实际工作需要操作和维修仪表的人员较少
事实上,自控仪表在实际的冶金应用中遇到的最大的问题便是人才短缺,企业在改革初期,大量的输出人力到国外学习,但是,由于企业使用的是国外的自控仪表,所以导致很多维修操作人员的语言文字障碍,需要维修人员不仅懂得使用和维修,而且懂得自控仪表的生产国的语言文字,使得很多企业不得不聘请外国人员长期驻国内,导致人力投入过大。
二、自控仪表在冶金工业中的应用
在中国改革开放和加入WTO以后,自控仪表已经在冶金工业中得到广泛的应用,国内企业越来越重视自控仪表的使用,大多数有实力的冶金企业组织人力,物理成立专门的自控仪表研发部门,而且有些企业已经在研发方面取得了可喜的成绩,越来越多的企业在使用自控仪表中的到越来越多的实惠。企业也在这种实惠中体会到自控仪表的重要性,对次本文分几方面叙述如下:
(1)是学术界对自控仪表的发展的期望很高,中国加入WTO以后,不仅国内企业与国外企业间的合作加多,而且学术方面国内也和国外有了更多的交流和学习。在自动化控制仪表方面,国内有更多的专家支持企业加快自动化的脚步,不仅在理论学术上指导企业改革发展,并且在实践中能够给予更多的帮助。在学术方面的成长也带动了我国自动化人才的培养和发展,国内高校自控仪表应用研发型人才的培养也的到了改善,涌现出一片自动化热,有很多企业单独成立了自控仪表部门,负责研发和指导使用自控仪表。
(2)是企业对自主创新的积极性很高。随着现代企业的发展,市场经济的瞬息万变,冶金工业也不能不再只停留在对企业的简单管理控制上,而是要加强自身的独立的发展体系,而这种宏伟的目标并非朝夕所成,这需要大量的时间的考验,和资金的投入。在冶金企业自动化改革后,企业生产力得到大幅度提升,企业效益蒸蒸日上,各大企业也将创新自控仪表当作发展目标,并且取得了可喜的成绩。但是大量的资金投入对企业将有一定的回报风险,所以我们应该将创新的工作价值化,以创新带动发展,使其更加经济高效,为企业提供全方位的服务。而企业自控部门的职能定位的改变,主要体现在两个方面:1)原有的引进理念的变化。去除掉我们内心的拿来主义,树立自主创新的一时,把创新发展的关注点从企业内部移到企业的整体发展上来。2)明确创新发展的目标。创新理念的的改变也可以从侧面促使企业或个人增强责任感,为企业创造更高的经济效益,自控仪表的研发也不可忽视对成本的控制,在投入与产出之间形成良好的经济性,自控仪表的使用加之更加接近企业本身的价值链。
(3)是政府对企业改革的支持。有意识的培养一些创新型的企业。鼓励自控仪表企业的研发,给予政策的支持。在使用自控仪表的过程中我们应当积累更多的经验,与好的企业进行联合,技术交流,为企业生存增加筹码。
三、结语
以上就是差异网为大家整理的5篇《冶金工业论文》,希望可以启发您的一些写作思路。
冶金行业论文2
关键词: 电磁搅拌技术;冶金行业;钢铁;质量;电磁力
中图分类号:TF777 文献标识码:A 文章编号:1006-4311(2014)07-0043-04
0 引言
早在19世纪六七十年代,亚瑟和达勒恩就提出了以水冷、底部敞口固定结晶器为特征的常规连铸概念。亚瑟倡导采用底部敞开、垂直固定的厚壁铁结晶器与中间包相连,施行间歇式拉坯。而达勒恩则提出采用固定式水冷薄壁铜结晶器施行连续拉坯、二次冷却,并带飞剪切割、引锭杆垂直存放装置。到20世纪二三十年代,连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。而电磁搅拌技术运用于连铸生产可以有效控制钢液凝固过程中的流动、传热、传质等现象,可以有效改善连铸坯的内部组织结构和表面质量,提高连铸坯质量。因此,连铸电磁搅拌技术成为国内外学者研究的热点。
我国独立进行连铸电磁搅拌技术研究始于20世纪70年代,以自主开发为主。到了80年代中期,改革开放逐渐深入,开始引进特殊钢连铸机和板坯连铸机,引进各种类型的电磁搅拌装置。经过三四十年的吸收和研究,我国的连铸电磁搅拌技术得到了长足发展,目前已经能完全自主承担搅拌器的设计、生产、应用,但是,电磁搅拌器的线圈却仍旧依赖进口,提高其使用寿命是当前连铸电磁搅拌技术发展的重要内容之一。
电磁搅拌器在运转过程中,线圈会发热,必须使用循环水降温,而线圈长期浸泡在循环水中或是经受循环水的冲刷,很容易导致线圈表面的防水膜和绝缘膜损坏、失效,进而导致漏电现象的发生。当漏电电流超过一定控制值时,必须及时修复线圈。因此,利用新技术延长线圈使用寿命成为连铸电磁搅拌技术发展的重要方向之一。
1 连铸电磁搅拌技术
连铸电磁搅拌技术可以有效提高连铸坯的质量和品质,其原理是:当连铸坯中的液态金属通过交变磁场时,电磁搅拌就通过不同形式的磁场发生装置使液态金属产生感生电流,而感生电流又与磁场的感应强度发生一定的作用,并产生电磁力,而电磁力就控制连铸过程中钢水的流动、传热、传质等现象,提高钢的清洁度,有效扩大连铸坯的等轴晶区,消除其中心疏松或是中心缩孔,从而达到优产的目的,生产出更多高质量连铸坯,生产出更多高质量钢材。从安装位置不同角度来说,连铸电磁搅拌装置可以分成以下五种类型:
结晶器电磁搅拌装置,又称为M-EMS。这种搅拌器适用于当前市场上所有型号的连铸机,主要作用是改善连铸坯表面质量,减少连铸坯内部的杂质,消减中心疏松。这种搅拌装置因适用于所有连铸机,因而也是目前应用最为广泛的搅拌器,一般安装在结晶器的下面,既可以安装在结晶器的,又可以安装在其内部,在实际应用中,多安装在。电磁搅拌器安装在结晶器的,其铁芯激发出来的磁场通过结晶器的钢质水套和铜管进入到钢水中,并借助感生电流与磁场作用产生的电磁力使结晶器内的钢水呈现左右或上下有规律的垂直旋转运动,这种搅拌运动可以改变连铸坯表面的质量。忽略拉坯频率的影响,结晶器内壁表面的磁通密度最大,结晶器内的磁通密度是不一致的,而电磁搅拌使得结晶器内的冷却变得更加均匀。在电磁搅拌作用下,早期凝固的地方被熔化与新进的钢水充分混合然后再凝固,而结晶器内搅拌的地方冷隔的深度就越来越浅。另外,结晶器电磁搅拌装置可以有效增强结晶器内钢水均匀凝固的能力,从而消减连铸坯表面的纵裂,改善其表面质量。
二冷段电磁搅拌装置,又被称为S-EMS。这种电磁搅拌装置的作用在于提高连铸坯内部和表面质量,与结晶器电磁搅拌装置组合起来,大大提升连铸坯的质量和品质。当钢水进入结晶器之后,结晶器的电磁搅拌装置迅速发挥作用,但是,单级的电磁搅拌装置会使得铸坯的下部聚集等轴晶,而上部却聚集柱状晶,这样就会导致铸坯内部出现缩孔、偏析现象,从而影响到连铸坯的内部质量。因此,在二冷段安装电磁搅拌装置是非常有必要的,一般可以在二冷一段和二冷二段分别安装一个电磁搅拌装置,二冷一段就在结晶器的足辊处,该处的电磁搅拌装置与结晶器电磁搅拌装置的作用是相同的,一般不会重复使用,也就是说:一般将二冷一段的电磁搅拌装置或是结晶器电磁搅拌装置与二冷二段电磁搅拌装置组合使用。二冷二段电磁搅拌装置作用在于细化铸坯的晶粒,它能使铸坯上部的柱状晶被流动的钢水打破,并生成大量的等轴晶,从而扩大铸坯等轴晶的范围,消减或是消除中心偏析、中心缩孔现象。
凝固末端电磁搅拌装置,又被称为F-EMS。当浇筑含碳高的特殊钢种时,一般会在液相穴长度的3/4处也就是靠近凝固末端安装一个电磁搅拌装置。在二冷段电磁搅拌装置的作用下,铸坯的下半部聚集等轴晶,如果这时直接将连铸坯拉出来的话,其上部的柱状晶就会向芯部生长,进而影响到铸坯的内部质量。而液相穴3/4处已经是凝固末端,钢水处于糊状,在偏析作用下,该部位的溶质浓度较高,容易造成中心偏析现象,如果在该位置安装电磁搅拌装置,打碎液相穴末端上部柱状晶的生长,并使其下沉分散覆盖到下部的等轴晶上,从而有效减少中心偏析现象,减少中心疏松现象,提高连铸坯内部质量。
组合式电磁搅拌技术,又被称为KM技术,就是说运用前文所提到的三种技术中的任意两种或是三种,形成组合效果,大范围内改善连铸坯表面和内部结构,减少中心偏析现象。
跨结晶电磁搅拌装置。跨结晶电磁搅拌装置安装在结晶器水套外边结晶器与足辊之间,在国内运用较少,只有少数大型钢厂从德国引进了该种电磁搅拌装置。跨结晶电磁搅拌装置的安装位置、磁场分布、磁感应强度、搅拌方式、钢水流动形式等都与前文所提的三种搅拌装置不同。就从其安装的位置来说,其作用是结晶器电磁搅拌装置和二冷段电磁搅拌装置作用的组合。在实际的钢材生产中,包钢运用跨结晶电磁搅拌装置取得了非常好的效果,大大改善了铸坯中心疏松和中心偏析,生产出来的重轨钢大方坯的中心碳偏析平均系数仅为,等轴晶率高达45%-72%,中心疏松得到了明显改善。而前面三种电磁搅拌技术组合起来的效果也不如跨结晶电磁搅拌装置的效果,所以说,深入研究跨结晶电磁搅拌,并推动其广泛运用对钢材生产具有重要现实意义,有利于提高铸坯内部和表面质量,提升铸坯质量。曹建刚等人在《跨结晶器电磁搅拌器磁场特性测试和分析》一文中对280mm×380mm的方坯连铸机跨结晶电磁搅拌装置进行了磁场特性测试,研究结果表明,根据结晶器内外磁场的强度和差别合理选择搅拌工艺和电流强度可以有效提高搅拌效果和延长线圈的使用寿命。
2 电磁搅拌技术的工作原理以及用于冶金的机理
电磁搅拌技术的工作原理 一个完整的电磁搅拌装置由低频电源装置、感应器和冷却系统组成。低频电源装置把50Hz的工频电转换成两相正交的低频率电源,根据炉子大小、感应器的结构来确定频率,一般在之间。感应器由线圈和铁芯组成。冷却系统的作用在于冷却线圈和铁芯,提高其线圈和铁芯的使用寿命。
电磁搅拌技术的工作原理与普通的三相异步电动机的工作原理类似。感应器就相当于电动机的定子,由三相电源供电。当感应器的线圈内通入低频电流时,就会产生一个行波磁场,而磁场穿过炉底就作用于钢水,在钢水中产生感应电势和电流,感生电流又与磁场发生作用,产生电磁力,从而控制钢水的流动,起到搅拌效果。所以说,电磁搅拌技术是靠电磁力对钢水进行非接触性搅拌的,不会对钢水产生污染,只需要根据实际情况改变电流大小就可以调整电磁力大小,从而控制搅拌的力度。而且,电磁搅拌装置的搅拌方式也有很多,包括:强搅、弱搅、正搅、反搅、自动搅等,可以根据工业生产的需要选择合适的搅拌方式。
电磁搅拌技术的冶金机理 电磁搅拌技术的冶金机理表现在两个方面:机械效应和热效应。以前文提到的结晶器电磁搅拌技术为例,在实际生产中一般采用旋转搅拌方式,当钢水的旋转速度达到一定的限值时就会产生离心力,并使钢水中的杂质以及气泡聚集在中心,然后再被熔融保护渣吸收掉,从而使得铸坯表面和内部的杂质、气泡较少,提高铸坯的质量。在搅拌的过程中,旋转搅拌使坯壳更加均匀,从而减少了漏钢的可能性,一定程度上改善了铸坯的表面结构。前文也提到过,旋转搅拌可以增强电磁力的作用,并扩大等轴晶的生长空间,减少柱状晶,减少铸坯中心疏松,有利于铸坯内部结构的改善。
3 连铸电磁搅拌技术在冶金行业的应用
连铸电磁搅拌技术在我国的研究始于20世纪70年代,经过这几十年的研究和发展,连铸电磁搅拌技术在冶金行业得到了广泛应用,推动了我国冶金行业的发展,也促进了自身技术的进步。
连铸电磁搅拌技术在方圆坯连续铸钢中的应用
目前,连铸电磁搅拌技术应用最为广泛的就是方圆坯连铸钢,目前国内生产优质钢以及高碳钢的工厂都配备有电磁搅拌装置,电磁搅拌技术俨然成为提高铸坯质量的重要技术工艺之一,成为连铸机上必备的技术和装置之一。
连铸电磁搅拌技术就是在金属的连铸过程中通过电磁力控制液态金属的内部运动,从而达到提升连铸坯表面和内部质量的目的。安装在不同部位的电磁搅拌装置会起到不同的效果,这一点在前文已有详细阐述。而安装在不同部位的电磁搅拌装置也适用于不同类型钢种的生产。比如说:结晶器电磁搅拌装置适合于低合金钢、弹簧钢、冷轧钢、中高碳钢的生产;二冷段电磁搅拌装置适用于工具钢、不锈钢的生产;凝固末端电磁搅拌装置适合于弹簧钢、轴承钢、特殊高碳钢的生产。
在连铸电磁搅拌技术设计开发上,国外著名公司主要有:瑞士的ABB、意大利的DANIELI-ROTELEC、德国的CONCAST等,国内的著名企业是:湖南的科美达电气、中科电气等。虽然说国外公司在电磁搅拌技术的研发上时间早、投入多,但是在方圆坯连铸钢的电磁搅拌技术上,我国取得了巨大突破,尤其是在特大圆坯连铸钢电磁搅拌技术在世界处于领先地位。湖南科美达电气有限公司设计的?准900圆坯连铸电磁搅拌系统生产出来的圆坯连铸钢是世界上最大的。其设计出来的?准800圆坯连铸电磁搅拌系统运用到江阴兴澄特钢特大圆坯连铸机上,生产出来的圆坯连铸钢质量优良,第一次投产就达到了质量标准。第一次生产出来的?准800圆坯连铸钢的钢种为:42CrMo4,中心疏松为1级,而中心偏析、中心缩孔、中心裂纹均为0,质量优良。由此可见,连铸电磁搅拌技术应用于方圆连铸钢是有效的,在未来还将有更广阔的发展空间。
连铸电磁搅拌技术在板坯连续铸钢中的应用 连铸电磁搅拌技术应用于板坯连续铸钢的生产最早可以追溯到1973年的日本新日铁公司的君律厂,那是世界上第一台板坯连铸机二冷段电磁搅拌装置。到今天,连铸电磁搅拌技术应用到板坯连续钢的生产中,主要是将电磁搅拌装置安装在连铸机的结晶器和二冷段。
安装在结晶器的电磁搅拌装置主要作用是控制钢水的流动、传热。1981年,日本新日铁公司设计出基于双边行波磁场的结晶器电磁搅拌技术,到1999年,新日铁公司的连铸机基本上都配备了结晶器电磁搅拌装置,沿板坯宽面配置两台搅拌装置,安装在结余弯月面和水口侧孔之间,其电源是低频和三相,流动形式是水平旋转,它的主要作用是:较少铸坯表面的杂质和气泡,使铸坯坯壳均匀,减少漏钢,减少铸坯表面的纵向裂纹。
1982年,日本的KSC公司和瑞士的ABB公司联合研发出了基于直流磁场的结晶器电磁制动技术。将搅拌器安装在水口侧孔吐出的流股主流处,其作用是:减少铸坯内部杂质,减少纵向和横向裂纹,减少漏钢,提高拉速。
1991年,日本NKK研发出了基于四个行波磁场的流动控制技术,到21世纪,NKK又在此基础上开发出了多模式电磁搅拌技术。该技术需要在板坯连铸机的宽面上配置4个搅拌器,安装在结晶器的半高处,可以起到加速和减速钢水水平旋转的作用,其作用主要是:减少漏钢事故以及系统报警,减少条状和铅笔状裂纹,提高窄面的润滑度,减少宽面上的中部纵裂,有效减少杂质、气泡在内弧侧1/4坯厚处的聚集等。
安装在二冷段的板坯电磁搅拌装置,其作用是扩大铸坯中心的等轴晶生长空间,减少中心偏析、中心疏松、中心缩孔,提升铸坯内部质量。而安装在板坯连铸机二冷段的电磁搅拌装置分成三种类型:箱式电磁搅拌器、插入式电磁搅拌器和辊式电磁搅拌器。箱式电磁搅拌器无论是安装还是维修都比较复杂,费用大,功耗大,所以一般不会安装箱式电磁搅拌器。插入式电磁搅拌器的安装流程是:在板坯两面各更换掉一根支撑辊,由非磁性小辊替代——在板坯两面的小辊间各安装一台搅拌器。插入式搅拌器的安装和维护虽然也比较复杂,但是其功耗非常小,搅拌效果也非常好。辊式电磁搅拌器就是将板坯连铸机扇形段的两面各取下一根支撑辊,然后再用电磁搅拌辊替代,起到支撑和搅拌作用。该搅拌器的功耗小,无论是安装还是维修都非常方便,无需对板坯连铸机进行较大幅度的改造,搅拌器安装的位置也非常灵活。
连铸电磁搅拌技术在有色金属熔炼中的应用 连铸电磁搅拌技术应用于有色金属熔炼最早是1968年瑞士ABB公司生产的铝熔炼炉电磁搅拌装置,目前,在全球有一百多台铝熔炼炉电磁搅拌装置在运行。而其制造商主要是瑞士ABB公司和我国的优利科公司,而科美达公司则从2005年开始进入研究有色金属熔炼电磁搅拌装置设计研发,目前已为厂家提供16台熔炼炉炉底电磁搅拌装置,运用计算机控制技术和交变频控制技术实现设备的长期运转,提高了生产效率和搅拌效果。
熔炼炉电磁搅拌装置能有效提高有色金属冶炼的效率和金属材料的质量,是提升合金材料质量的重要设备之一。其主要作用是:在有色金属的熔炼过程中,通过搅拌装置减少熔炼时间,使熔体表面和底部的温差变小,减少对熔体的二次污染,清除掉熔体中的非金属杂质,从而细化合金组织,降低能源消耗。
熔炼炉电磁搅拌装置的原理:当感应器中通过低频电流时,会产生行波磁场,而该磁场又使得炉内的溶液产生感应电流,感应电流在与当地磁场作用下形成电磁力,从而推动炉内溶液进行直线运动,而且,电磁力可以使溶液向上做倾斜状流动,从而逐步减小溶液上部与下部的温差。
连铸电磁搅拌技术在坩埚熔炼中的应用 电磁搅拌技术应用于坩埚熔炼中主要是改善材料的性能,目前,学界、实物界正将电磁搅拌技术应用于坩埚熔炼作为研究热点,一些著名公司也研发成功了应用于坩埚熔炼的电磁搅拌装置。伴随着国民经济的快速发展,市场对材料工业提出了更高的要求,科学院着力研究如何通过电磁搅拌技术改善材料性能。在这种研究形势下,应用于坩埚熔炼的电磁搅拌技术也呈现出多元化发展,比如说:磁场形态的多元化,既有旋转磁场,也有复合磁场,同时还有螺旋磁场等。再比如说:被搅拌材料的多元化,镁合金、铝合金、单晶硅等。
4 连铸电磁搅拌技术在冶金行业的成果
连铸电磁搅拌技术已在冶金行业得到广泛运用,而国内外许多著名公司也开始逐渐将研究视角延伸到其他行业中。就冶金行业而言,科学家经过多年的研究,取得了丰硕的成果,主要表现在以下四个方面:
电磁搅拌器中心的磁感应强度与电流强度有关,电流强度增大,中心的磁感应强度也增大,而搅拌的频率对磁场的分布几乎没有影响,随着搅拌频率的逐渐增加,磁场感应强度减小的幅度非常小,而直接作用于钢水的电磁力则同时受到电流强度和搅拌频率的影响。电流强度增大,电磁力增大;搅拌频率增大,电磁力减小。
旋转电磁力在水平面上是一对力偶,推动钢水进行顺时针匀速旋转运动,同一水平面上相同径向距离的电磁力大小相等,中心处的电磁力最小。
电磁搅拌装置影响着钢水的传热。没有采用电磁搅拌装置的连铸机中过热钢水直接从水口向下流动,过热度消失得非常缓慢,这样就造成铸坯断面上芯部的温度过高。采用电磁搅拌装置之后,原来的水流是从上向下垂直流动,现在就变成了水平流动,从水口流出的过热钢水浸入深度逐渐变浅,轴向温度降低,径向温度升高,使得凝固前沿的温度梯度迅速增加,从而利于传热。
钢水中的磁感应强度与电流强度成反比关系,而电流强度较低时,钢水中的磁感应强度大,而且分布比较均匀;电流强度大时,磁感应强度分布不均匀,一般是角部的磁感应强度大,而中心的磁感应强度小。
5 冶金行业的未来发展方向
连铸电磁搅拌技术应用于冶金行业大大推动了我国钢铁市场的发展,钢种越来越多,而钢材的质量和品质也在不断提升。在连铸电磁搅拌技术的发展下,我国冶金行业未来发展方向主要是质量、技术和创新。
连铸电磁搅拌技术可以有效提高铸坯的质量和品质,因此,冶金行业未来的一个重要发展方向就是不断提高钢铁的质量,学会利用先进的电磁搅拌技术实现钢铁质量的提高,利用科学技术减少钢材中的杂质,提高钢材的纯净度,生产出更多类型的连铸坯。冶金企业要根据公司的实际情况对现有技术和连铸机进行适当改进,引进先进技术,提高连铸机的作业效率,减少能源浪费,改善铸坯表面和内部结构,提高铸坯质量。既要研发具有自主知识产权的新技术,也要学会吸收国外的先进技术和工艺,开展实验研究,研发新装置,逐步缩小我国钢铁与世界钢铁的距离,加强国际交流合作,缩短新技术、新装置研发、应用于工业生产的周期,充分发挥科技的力量。
6 结束语
经过大量的实验证明,连铸电磁搅拌技术应用于冶金行业可以提高铸坯质量、降低成本消耗、增加连铸钢种、减少中心缩孔、消除中心偏析、增加铸坯内部等轴晶率等,总而言之,连铸电磁搅拌技术应用于冶金行业大大提高了钢铁质量,为钢铁行业发展注入了发展活力。
在未来,连铸电磁搅拌技术将与工业计算机控制技术、冶金技术、信息技术等融合起来,提高冶金行业的科技含量,将知识变成生产力,开创冶金行业新风象,逐步实现电磁搅拌的可视化、自动控制化等。而冶金企业也要抓住发展机遇,运用新技术、新装置,研发新技术、新装置,增加生产的科技含量,提高生产效率,减少能耗,提高经济效益,生产出更多高质量的钢材,推动我国冶金企业走向世界。
参考文献:
[1]王宝峰,李建超。电磁搅拌技术在连铸生产中的应用[J].鞍钢技术,2009(1).
[2]潘秀兰,王艳红,梁慧智。国内外电磁搅拌技术的发展与展望[J].鞍钢技术,2005(4).
[3]陈明,周代文。电磁搅拌技术在连铸上的应用[J].宽厚板,2009(5).
[4]赵少飞,杨海西。电磁搅拌技术在板坯连铸中的应用[J].河北冶金,2012(5).
[5]吴存有,周月明,侯晓光。电磁搅拌技术的发展[J].世界钢铁,2010(2).
[6]陈伟,王琛。电磁连铸技术的应用及发展[J].河北理工大学学报(自然科学版),2011(4).
[7]石瑞。电磁搅拌技术在冶金方面的应用[J].机械研究与应用,2012(2).
[8]侯亚雄,赵训迪,袁文见,等。电磁搅拌技术在冶金行业的应用[A].第一届电磁冶金与强磁场材料科学学术会议论文集[C].2011.
[9]方坯连铸电磁搅拌技术应用中的几个重要问题[A].中国金属学会特钢连铸技术研讨会论文集[C].2007.
[10]金百刚,王军,陈明,等。鞍钢电磁搅拌技术的研究与应用[A].第三届中德(欧)冶金技术研讨会论文集[C].2011.
[11]陈伟,朱立光,王琛。电磁技术在连铸中的应用及发展[A].第一届电磁冶金与强磁场材料科学学术会议论文集[C].2011.
[12]李伟轩。电磁场在铜连铸中应用的研究[D].上海大学:2009.
冶金行业论文3
一、应用型人才的培养目标
在经济全球化的国际经济发展形势下,高新技术的发展使生产从劳动密集型向技术密集型转变,因此急需大批中高级应用型人才。与此同时我国高等教育体制改革不断深入,“应用型本科教育”在这种背景下出现。独立学院的办学特色即进行应用型本科教育,而我院冶金与材料专业培养的是介于工程型人才和技术型人才之间的工程技术型人才[2]。
二、应用型人才的培养方案
高等教育体制的改革伴随着办学层次、形式、特色的多样化,但是新的教育模式必须经过理论和实践的论证,具有其合理性。应用型人才的培养必须强调专业理论和实践的同等重要性,不能顾此失彼。我院对工程技术人才的培养从以下几方面入手。
(一)优化培养工程技术人才的教学大纲,合理设置理论课与实践环节的比重,并将二者有机结合起来、环环相扣,起到相得益彰的作用。我院一方面借鉴北京科技大学冶金与材料两个学科的本科专业培养方案,另一方面结合独立学院的生源情况与培养目标进行探索。在注重专业基础的同时,增加实践环节,培养学生的实际解决问题能力和创新能力。
(二)建设一支与独立学院人才培养目标相适应的、具有很强技术应用能力的师资队伍。我院充分利用校本部的优秀教学资源,聘请了一批具有丰富教学经验的教师前来授课,同时由年轻教师担任助教,推动我院教师队伍的成长与壮大。此外我院还从钢铁企业聘请了一批高级工程师担任特聘教授,定期展开讲座,使学生了解所学专业的发展方向、亟待解决的问题,激发学生的创新思维。
(三)建立长期的产学研基地,强调认识实习、生产实习、毕业设计过程中学生的能动性,使学生通过一系列的实践环节能够更深刻地理解专业知识,将理论向生产力的转化,具备较好的科技创新能力。
(四)建立完备的实验设施,使学生能够利用实验室资源,基本掌握材料组织分析及表征手段。并结合材料研究进展不断开发新的实验内容,培养学生的自主创新和科研能力。
三、教学环节设计
(一)与教学目标相适应的课程体系
根据北京科技大学天津学院材料科学与工程系的培养目标,参考校本部的专业设置,我院对自身的专业和知识结构体系进行了明确的定位,如图1所示。
1.对教学实施及时进行评估、总结,不断调整教学计划、教学内容以适应新的教学目标。学生在第五学期同时进行冶金与材料专业课的学习,其中包括冶金物理化学、钢铁冶金、材料科学基础等方面的课程,教学目标是使学生掌握冶金、材料成型的基本原理;并且后续设置了湿法冶金、材料成型加工、无机非金属材料等课程,使学生掌握材料的成型与制备工艺,将专业理论与生产工艺相结合,从而具备从事冶金行业的产品设计、开发能力。
2.为了推进教学改革、不断提高教学质量,我院投入专项经费开展了重点专业建设、精品课程建设项目。预期通过重点专业建设进一步明确人才培养目标,改善教学实践基础设施,构建以专业能力为核心的教学体系,培养出一支优秀的教师队伍。通过精品课程建设鼓励广大教师积极投身课程改革,不断更新和完善教学资源,增进教师间交流,探索新的教学方法。例如《材料科学基础》精品课程已连续两年以诺贝尔奖石墨烯、准晶材料为主题,组织学生进行文献综述、交流,同学们能够很好地结合课堂所学专业知识来理解前沿的研究成果,又激发了自身的专业学习热情,取得了很好的教学效果。
3.为拓宽学生的专业知识和视野、更多地了解行业动态和国际前沿,特聘请客座教授授课,介绍冶金与材料行业的最新进展和科技动态。学生通过该课程对冶金行业的发展、前沿的科学技术有了更深刻的认识,同时极大地激发了学生探索未知领域的热情与信心。
4.随着国际学术交流的日益增多,使用英语来表达信息、传播信息变得尤为重要,因此我院设置了双语教学的《材料科学导论》课程。采用英文原版教材Structure and Properties of Engineering Materials作为教材,使学生通过原汁原味的英语来学习专业英语的阅读和写作技巧,同时掌握扎实的专业外语,具备获取最新国际研究成果、进行国际学术交流的能力。
(二)注重能力培养的实验教学
实验教学作为理论教学的验证与补充,能使学生更好地理解专业知识,锻炼动手能力与创新能力,培养严谨求实的科学精神。我院为适应材料科学与工程专业的发展进行了专业实验室的建设,其中包括冶金物理化学实验室、金相与热处理实验室、水力学模型试验室、清洁能源实验室。实验室除承担部分实践教学任务之外,也是本科毕业设计顺利完成的保证。
目前我院开设了《金属学与热处理实验》、《材料科学工程与基础实验》、《冶金工程实验技术》、《冶金物理化学实验》四门实验课程,在实验教学过程中从以下几点进行了探索。
1.根据培养计划进行实验课的设置,按照重点授课内容进行最优的实验设计,使学生通过对比实验探求规律,得到正确理论认识,进而结合专业知识对实验结果进行分析与思考。
2.合理分配实验课学时,培养学生的动手能力,使学生通过实验课掌握分析材料的组织和性能的基本方法。
3.充分调动学生自主创新的积极性,引导学生进行探索性试验。使部分学生参与到具体教学研究项目中,具有一定的科学研究能力。
四、结语
北京科技大学天津学院材料系在发展过程中充分利用了校本部优秀教育资源,但是由于独立学院自身设备、资金、经验不足等一些特点,探索、总结出适合于我院大材料专业实际情况的教学模式十分重要。自建系以来,我们通过一系列教学改革已经取得了一定的进展,今后会投入更多的精力完善整个教学环节,培养适应新时期发展的工程技术应用人才。
参考文献:
[1]谢建新。材料科学与工程本科人才培养的改革与实践。中国冶金教育学会材料科学与工程专业教学研讨会论文集,
冶金行业论文4
论文内容摘要:本文以贵州省为例,通过关键指标分析、因子分析、区位商分析等方法,对其优势产业进行综合分析,从而选定工业中的优势行业及潜在的优势行业。同时,针对这些优势产业发展存在的问题提出促进其持续发展的对策建议。
区域优势产业选择
本文以贵州省为例,选取规模以上工业37个大类行业进行优势行业的分析评价。对于贵州省工业中优势产业的选择,主要从三个方面来进行分析评价:
(一)工业部门各行业的关键指标分析
1.规模分析。工业总产值和工业增加值是反映一定时间内工业生产的总规模和水平以及工业生产活动最终成果最重()要的指标。通过对贵州省2007年的统计资料进行加工整理,其总产值和增加值排名前十大行业见表1。
2.经济贡献分析。利润总额是评价工业行业财务状况和经营成果、衡量行业管理水平和成长发展能力最主要的指标。税金总额反映工业行业对国家税收的贡献程度。从业人员数反映了工业各部门对解决贵州省人口就业所做贡献。通过对贵州省2007年的统计资料进行加工整理,其利润总额和税金总额以及全部从业人员平均人数排名前十大行业见表2和表3。
3.科技投入分析。工业行业的研究开发经费(R&D经费)占总研究开发经费的比重反映了各工业行业的科技实力。通过对贵州省2007年的统计资料进行加工整理,其研究开发费排名前十大行业见表4。
以上关键指标显示,各指标的前十大行业所占比重基本在80%以上,说明集中度很高,优势体现明显。从三个方面总体看,贵州省传统的优势行业如电力、饮料、烟草、煤炭、黑色冶金、有色冶金、化工和医药等行业基本处于各指标的前十位中。除此之外,交通运输设备制造、非金属矿物制品两行业基本处于前十大行业靠后的位置。
(二)因子分析
优势产业的选择是一个多因素、多准则的决策问题,根据文章所设置的优势产业选择原则,收集了大量衡量产业水平的指标数据。通过因子分析法计算得到各行业的综合得分,综合得分排名前十位的行业见表5。
从各行业因子分析的综合得分看,传统优势产业中烟草、电力、饮料、有色冶金和医药等行业在前十位中,石油加工、炼焦及核燃料加工,皮革、毛皮、羽毛(绒)及其制品,非金属矿采选、食品制造和工艺品及其他制造等五个行业也居前十位。
(三)区位商分析
分析区域分工优势常用区位商(LQ)来测定。选择工业增加值、主营业务收入、利润总额这三项指标进行区位商分析,得到排名前十位的工业行业见表6、表7、表8。
结果显示:工业增加值区位商中有7个行业LQ>1,分别是烟草、饮料、电力、医药、有色冶金、煤炭和化工行业;主营业务收入区位商中有8个行业LQ>1,分别是烟草、电力、饮料、煤炭、有色冶金、医药、化工和黑色冶金行业;利润总额区位商中有9个行业LQ>1,分别是饮料、非金属矿采选、有色冶金、烟草、医药、食品制造、化工、电力和煤炭行业。这表明贵州省这些产业的专业化程度超过全国,具有比较优势。
综合三个方面分析评价结果表明,贵州省传统的优势行业仍占主导地位,电力、饮料、烟草、煤炭、黑色冶金、有色冶金、化工和医药等行业基本处于各项指标的前列。此外,交通运输设备制造、非金属矿物制品、食品制造等行业基本处于靠前的位置,表明具有一定发展潜力。
区域优势产业发展存在的问题
资源密集型行业和资源加工型重化工业所占比重大。如采掘业中的煤炭行业和有色冶金、黑色冶金行业。这些行业产业层次低,经济关联度差,比较效益难以发挥,使得贵州省长期扮演东部能源、原材料供应基地的角色,加工工业基础薄弱,产品附加值低,增值能力弱。
轻工业偏轻。“两烟一酒”作为贵州省传统优势产业,是在过去计划经济体制和拥有独特资源条件下形成的,在市场经济条件下,市场发生很大变化,消费结构和观念的改变以及市场竞争日趋激烈,给其烟酒产业带来极大冲击。
新的比较优势产业尚待培育。除了传统的比较优势产业外,新的比较优势产业还亟待扶持和培育。
区域优势产业持续发展对策建议
(一)调整工业结构,重点是培育壮大优势产业
贵州有丰富廉价的电力资源,与丰富的煤、磷、铝资源组合在一起,有利于建立以煤、磷、铝开发和深加工为特色的原材料工业体系。必须研究开发出能发挥资源优势、对结构调整有重大影响的煤化工、磷化工、铝加工等新技术、新工艺、新项目,根据市场需要,以资源吸引资金、人才、技术,努力提高技术含量。
(二)注重节能降耗,大力促进产业结构调整
贵州省属于西部“欠发达”地区,是能源大省、资源大省,担负着“西电东送”的重大任务,产业结构中高耗能行业比重较大,节能减排任务十分艰巨。一些高耗能行业现阶段属于贵州省具有比较优势的行业,但随着国家节能减排力度加大,其优势条件将不断恶化以至丧失,因此在加快地方经济发展过程中,更加注重节能降耗,大力促进产业结构调整,切实转变经济增长方式。
(三)依托资源比较优势,突出发展特色经济
贵州具有丰富的能源、矿产、生物资源,并且组合条件良好。要想尽快将自然资源禀赋优势转化为经济优势,必须按照市场需求选择资源开发重点,突出发展特色经济。同时对资源进行深度加工,选择符合市场需求的加工方向及程度,获得较高的附加值。
参考文献:
1.刘公远。黑龙江省发展优势产业的基本对策。商业经济,2008(8)
2.贵州统计年鉴(2002-2008)
3.刘玉。欠发达地区产业集群竞争优势刚性及对策探析。生产力研究,2009(19)
冶金论文范文5
以往仅只满足污水处理要求的处理系统,通常总的处理环节为:分离-沉淀-排污,然而现如今除了最基本的污水处理需要外,对于环境保护、节约资源更提出了新的要求。不仅需要对治污排污量予以精确严格的监测与计量,对于输入的原水、沉淀池用水、调节池用水等利用量、循环回用量均需严格计算与检测。这也是我们此篇文章所要介绍之方案所拥有的特色系统功用,详见下文。
2工艺流程
基本工艺流程
基本工艺流程中分项工艺总体难度适中,实现无困难,衔接得体,目的清晰,便于管理。
各环节加强化学处理,高效分离
冶金污水通过收集沟道进入预先设置的集水池,随后进入沉淀池,由提升泵提升至浅层气浮系统(后文将详加解述)。废水经提升泵提升后,投加混凝剂PAC,通过充分混合搅拌使得PAC混凝剂药剂与冶金污水充分混合,之后流至机械搅拌反应池,利用机械搅拌加速其化学反应,污水中的悬浮物逐渐形成絮体。随之连接特别设置的旋流反应器,加强在PAC混凝剂作用下的化学反应。然后在旋流反应器后仍旧连接相同的管道混合器,其内投加絮凝剂PAM,使得投加PAC后形成的絮体絮凝反应后增大。絮凝好的污水混合物随之进入浅层气浮,利用加压溶气系统产生的溶气水经减压释放形成的微小气泡与废水中的悬浮物絮体互相接触,水中悬浮絮体自然粘附在微小气泡上,随气泡的上升一起浮到水面,形成与下层水体有明显分层界限的浮渣,最后除去表层浮渣,从而达到了净化水质的目的。而经过浅层气浮处理后的清水则由重力原因流到地下清水池储存起来,由回用水泵抽取提升后送至冶金生产车间继续循环使用,且回用率相当可观。浅层气浮浮渣和污泥最终排放至污泥池,经过压滤机固化处理后外运并进行深挖填埋,保证不影响周边环境与生态。反应池、浅层气浮中的放空废水以及板框压滤机的滤液排到污水池之后通过污水泵的提升,回到污水处理系统进行循环处理。
浅层气浮回流原理,缩短分离时间
本项目解决方案采用QF型高效浅层的气浮装置。该气浮装置针对以往之一般气浮池在进出水等方面的劣势,特别将其原水进口和净化水的出口设计为移动式,其目的在于缩短原水气泡整个上浮过程所经历的时间,意即在原水向气浮池流动的同时,池中布水管向着原水流出的相反方向而移动,使得进入池中的原水相对于水池基本处于相对静止之状态,水中的气泡因此而沿着与水平面相垂直的方向向上浮向水面,上浮速度接近原水中固态物质的上浮速度(4~10cm/min),因此原水中的悬浮物能够以接近于T=3min的上浮速度很快的浮到水面上,而浮渣层下的净化水仍停留在下层的原处,当净化水抽提管移到此处时,净化水就能被抽送水泵抽取而排到水池外。在这里,为求达到使得水泡垂直上浮的效果,最突出的问题便是需要使进、出水口能够同步移动,我们在此项目解决方案中,将该机设计为圆形,进、出口管均安放在一定的装置上,使它围绕着转轴中心旋转,这种旋转移动的布水方式巧妙的解决了我们的核心问题。由于原水中的悬浮物从水中浮到表面的速度快,可以达到三分钟净化原水达标的效果。净化时间缩短,在整个系统的污水处理能力与效率上自然获得了显著的提升。
QF型高效气浮主机系统详述气浮物理固液分离技术在污水处理中应用非常广泛,适用于气浮处理的设备也有多种,但其核心都是通过产生微生气泡,使絮凝颗粒附气上升分离。微细气泡的产生主要是通过电解、分散空气和溶解空气再释放等方式。QY-QF型高效气浮设备引进日本新技术,运用高效溶气泵将水、气混合加压溶解形成溶气水,再减压释放,微细气泡析出与悬浮颗粒高效吸附而上浮,从而达到固液分离的目的。气浮系统集进水、絮凝、分离、集水、出水于一体,与传统气浮设备类似,设有稳流室、溶气释放室,使处理性能更稳定,不但效果更优越,而且对于传统设备改造尤为适宜。尤为其中的QF型高效气浮主机系统有代表性,它集凝聚、气浮、清渣、沉淀、除泥为一体,整体呈圆柱形,结构紧凑,池深较浅。气浮装置的主体由池体、旋转布水机构、溶气释放机构、转架机构、集水机构,撇渣机构六部分而组成,进、出水口与排渣口全部集中在池体中央部分,布、集水机构、清渣机构都与框架紧密连接在一起,围绕池体中心转动。
新型浅池气浮装置系圆形气浮池,最大的工艺结构特点是中心进水旋转布水,掺入混凝剂发生絮凝后的原水与溶气系统产生的溶气水相互接触混合之后,在稳流,整流装置的作用下,水流基本处于稳定的状态,在此环境条件下完成固液的分离反应与传统气浮装置比较,从根本上改变进、出水方式,消除了固液在水流动态情况下进行的不利因素,使水的停留时间仅保持在4-6分钟以内(由旋转速度调整),也随之将气浮池的有效水深降低到仅400-500mm之间,较之传统气浮装置池子的深度降低了3-5倍以上。这里凝絮好的原水是指在原水中加入絮凝药剂PAC或PAM(PAC为400-1000mg/I,PAM为PAC的1/5左右),经10-15分钟的有效地絮凝反应,形成的原水。具体药量及絮凝时间,絮凝效果须由实验测定。提供成套设备总成及控制系统,通过集中控制与分散控制相结合,以使设备达到最佳运行状态。由于旋转布水器和稳流整流装置发挥作用,使得池内产生了无数个互不干扰的分离反应区,各分离反应区也随着循环周期(可调整的旋转速度)所产生的时间差相继出现或结束。分离反应结束之后在池内自上而下形成了浮渣层、清水层以及泥沙沉积层,其分别配备了同步与之转动的池底清泥装置,在这里,除了泥沙将被按时定时的从池底排出泥槽以外,净化水、浮渣再次循环进入分割的中心筒之内,从池底连续排出池体最终流入储存池,以上述过程为完整的工作循环,设备如此周而复始的连续工作。总体功能特点①.溶气泵边水和气同步吸收,在泵内进行加压混合、气液溶解率高、细微气泡大小平均小于等于30um;②.溶气的水溶解率高达80-99%,较传统气浮效率高3倍;③.自动控制可行性高,易操作、易维护、噪音污染低;④.溶气泵可取代循环泵、空压机、溶气罐、射流器及释放头等组成的复杂系统。
上一篇:现代教育思想论文(优质4篇)
下一篇:民事法学论文【范例4篇】